Skip to main content
Log in

Quenched disorder effects in electron transport in Si inversion layers in the dilute regime

  • Scientific Summaries
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

In order to reveal the effects of disorder in the vicinity of the apparent metal-insulator transition in 2D, we studied electron transport in the same Si device after cooling it down to 4 K at different fixed values of the gate voltage V cool. Different V cool did not significantly modify either the momentum relaxation rate or the strength of electron-electron interactions. However, temperature dependences of the resistance and the magnetoresistance in parallel magnetic fields in the vicinity of the 2D metal-insulator transition carry a strong imprint of the quenched disorder determined by V cool. This demonstrates that the observed transition between the metallic and insulating regimes, besides the universal effects of electron-electron interaction, depends on the sample-specific localized states (disorder). We report on evidence for a weak exchange of electrons between the reservoirs of extended and resonant localized states that occur at low densities. The strong cool-down dependent variations of ρ(T), we believe, are evidence for a developing spatially inhomogeneous state in the critical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abrahams, S. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).

    Article  ADS  Google Scholar 

  2. For a review, see: B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, Ed. by A. L. Efros and M. Pollak (Elsevier, Amsterdam, 1985); P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Google Scholar 

  3. G. Zala, B. N. Narozny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001); 65, 020201(R) (2002).

  4. I. V. Gornyi and A. D. Mirlin, Phys. Rev. B 69, 045313 (2004).

    Google Scholar 

  5. S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 83, 164 (1999).

    ADS  Google Scholar 

  6. A. M. Finkelstein, in Soviet Scientific Reviews, Ed. by I. M. Khalatnikov (Harwood Academic, London, 1990), Vol. 14, p. 3.

    Google Scholar 

  7. C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984); C. Castellani, G. Kotliar, and P. A. Lee, Phys. Rev. Lett. 59, 323 (1987); C. Castellani, C. Di Castro, H. Fakuyama, et al., Phys. Rev. B 33, 7277 (1986); C. Castellani, C. Di Castro, and P. A. Lee, Phys. Rev. B 57, R9381 (1998).

    ADS  Google Scholar 

  8. A. Punnoose and A. M. Finkelstein, Phys. Rev. Lett. 88, 016802 (2002).

    Google Scholar 

  9. V. M. Pudalov, M. Gershenson, H. Kojima, et al., Phys. Rev. Lett. 88, 196404 (2002).

    Google Scholar 

  10. Y. Y. Proskuryakov, A. K. Savchenko, S. S. Safonov, et al., Phys. Rev. Lett. 89, 076406 (2002).

  11. V. M. Pudalov, M. Gershenson, H. Kojima, et al., Phys. Rev. Lett. 91, 126403 (2003).

    Google Scholar 

  12. S. A. Vitkalov, K. James, B. N. Narozhny, et al., Phys. Rev. B 67, 113310 (2003).

    Google Scholar 

  13. J. Zhu, H. L. Stormer, L. N. Pfeiffer, et al., Phys. Rev. Lett. 90, 056805 (2003).

    Google Scholar 

  14. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974; Nauka, Moscow, 1979).

    Google Scholar 

  15. V. I. Kozub and N. V. Agrinskaya, Phys. Rev. B 64, 245103 (2001).

    Google Scholar 

  16. T. M. Klapwijk and S. Das Sarma, Solid State Commun. 110, 581 (1999).

    Article  Google Scholar 

  17. B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 83, 2092 (1999).

    Article  ADS  Google Scholar 

  18. V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, cond-mat/0103087.

  19. V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 076401 (2002).

    Google Scholar 

  20. V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, JETP Lett. 68, 442 (1998).

    ADS  Google Scholar 

  21. V cool determines the depth of the confining potential well and, simultaneously, the number of interface traps sunk under the Fermi level. At low temperatures, as V g is varied, the potential well remains almost unchanged and memorizes an imprint of the disorder formed during its cooling down.

  22. Sample Si6-14 with 190 nm thick gate oxide was fabricated on (001)-Si wafer and had a rectangular channel 2.5 × 0.25 mm oriented along [010].

  23. For a review see, T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  24. A. Gold and W. Götze, Phys. Rev. B 33, 2495 (1986).

    ADS  Google Scholar 

  25. B. L. Altshuler, D. L. Maslov, and V. M. Pudalov, Physica E (Amsterdam) 9, 209 (2001).

    ADS  Google Scholar 

  26. O. Prus, M. Reznikov, U. Sivan, and V. Pudalov, Phys. Rev. Lett. 88, 016801 (2002).

    Google Scholar 

  27. S. A. Vitkalov, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. B 65, 201106 (2002).

    Google Scholar 

  28. A. Gold and V. T. Dolgopolov, Phys. Rev. Lett. 89, 129701 (2002).

    Google Scholar 

  29. A. Yu. Kuntsevich, D. A. Knyazev, V. I. Kozub, et al., Pis’ma Zh. Éksp. Teor. Fiz. 81, 502 (2005) [JETP Lett. 81, 409 (2005)].

    Google Scholar 

  30. A. Lewalle, M. Pepper, C. J. B. Ford, et al., cond-mat/0108244.

  31. Y. Meir, Phys. Rev. Lett. 83, 3506 (1999).

    Article  ADS  Google Scholar 

  32. A. V. Kornilov, V. M. Pudalov, Y. Kitaoka, et al., Phys. Rev. B 69, 224404 (2004).

    Google Scholar 

  33. B. Spivak, Phys. Rev. B 64, 085317 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 82, No. 6, 2005, pp. 412–417.

Original English Text Copyright © 2005 by Pudalov, Gershenson, Klimov, Kojima.

The text was submitted by the authors in English.

A member of the editorial board of the journal JETP Letters 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pudalov, V.M., Gershenson, M.E., Klimov, N.N. et al. Quenched disorder effects in electron transport in Si inversion layers in the dilute regime. Jetp Lett. 82, 371–376 (2005). https://doi.org/10.1134/1.2137375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2137375

PACS numbers

Navigation