Skip to main content
Log in

Self-consistent turbulent convection in a magnetized plasma

  • Scientific Summaries
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

It has been shown that low-frequency vortex convection, which is self-consistently developed in a magnetized plasma, may lead to nondiffusive transport processes similar to those observed in various systems of the plasma magnetic confinement. To theoretically analyze such a convection, an approach is proposed on the basis of the direct computer simulation of the quasi-two-dimensional dynamics of a weakly dissipative plasma with the use of adiabatically reduced hydrodynamic-type equations. The derived equations ensure the description of both relatively fast nonlinear convective flows and slower resulting transport processes and allow the simulation of the plasma evolution at sufficiently long times comparable with the plasma lifetime. The simulation shows that the development of the convection leads to the formation of nonlinear large-scale stochastic vortex structures, which exhibit broad power-law frequency and wavenumber spectra, as well as the non-Gaussian statistics of fluctuations, and corresponds to the notion of structure turbulence. The resulting transport processes are nonlocal and nondiffusive and have a number of characteristic properties similar to those observed in real experiments. The self-consistency of the pressure and density profiles in the plasma, L-H transitions, impurity pinch, etc., are among these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Kadomtsev and O. P. Pogutse, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1967), No. 5, p. 209.

    Google Scholar 

  2. W. Horton, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (Énergoatomizdat, Moscow, 1984; North-Holland, Amsterdam, 1984), Vol. 2, p. 362.

    Google Scholar 

  3. J. W. Connor, P. Buratti, J. D. Cordey, et al., Plasma Phys. Controlled Fusion 41, 693 (1999).

    ADS  Google Scholar 

  4. M. V. Ossipenko and T-10 Team, in Proceedings of 19th IAEA Fusion Energy Conference, Lyon, 2002 (IAEA, Vienna, 2003), Rep. OV/5-2.

    Google Scholar 

  5. G. M. Batanov, L. V. Kolik, A. E. Petrov, et al., Fiz. Plazmy 29, 395 (2003) [Plasma Phys. Rep. 29, 363 (2003)].

    Google Scholar 

  6. G. M. Batanov, V. E. Bening, V. Yu. Korolev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 78, 974 (2003) [JETP Lett. 78, 502 (2003)].

    Google Scholar 

  7. T. Cho, M. Yoshida, H. Higaki, et al., J. Plasma Fusion Res. 80, 81 (2004).

    Article  Google Scholar 

  8. T. Cho, M. Yoshida, J. Kohagura, et al., Phys. Rev. Lett. 94, 085002 (2005).

  9. V. V. Abrakov, A. E. Petrov, K. A. Sarksyan, and N. N. Skvortsova, Fiz. Plazmy 20, 1069 (1994) [Plasma Phys. Rep. 20, 959 (1994)].

    Google Scholar 

  10. G. Y. Antar, S. I. Krasheninnikov, P. Devynck, et al., Phys. Rev. Lett. 87, 065001 (2001).

    Google Scholar 

  11. N. Ohno, D. Nishijima, S. Takamura, et al., Nucl. Fusion 41, 1055 (2001).

    Article  Google Scholar 

  12. J. A. Boedo, D. L. Rudakov, R. Moyer, et al., Phys. Plasmas 8, 4826 (2001).

    Article  ADS  Google Scholar 

  13. S. D. Danilov and D. Gurarie, Usp. Fiz. Nauk 170, 921 (2000) [Phys. Usp. 43, 863 (2000)].

    Google Scholar 

  14. B. B. Kadomtsev and O. P. Pogutse, Zh. Éksp. Teor. Fiz. 65, 575 (1973) [Sov. Phys. JETP 38, 283 (1973)].

    ADS  Google Scholar 

  15. R. White, D. Monticello, M. N. Rosenbluth, et al., in Proceedings of 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, 1974 (IAEA, Vienna, 1975), Vol. 1, p. 495.

    Google Scholar 

  16. H. R. Strauss, Phys. Fluids 19, 134 (1976).

    ADS  Google Scholar 

  17. H. R. Strauss, Phys. Fluids 20, 1354 (1977).

    ADS  Google Scholar 

  18. V. P. Pastukhov, Pis’ma Zh. Éksp. Teor. Fiz. 67, 892 (1998) [JETP Lett. 67, 940 (1998)].

    Google Scholar 

  19. V. P. Pastukhov, Fiz. Plazmy 26, 566 (2000) [Plasma Phys. Rep. 26, 529 (2000)].

    Google Scholar 

  20. V. P. Pastukhov and N. V. Chudin, Fiz. Plazmy 27, 963 (2001) [Plasma Phys. Rep. 27, 907 (2001)].

    Google Scholar 

  21. V. P. Pastukhov and N. V. Chudin, in Proceedings of 19th IAEA Fusion Energy Conference, Lyon, 2002 (IAEA, Vienna, 2003), Rep. TH/2-5.

    Google Scholar 

  22. V. P. Pastukhov, Fiz. Plazmy 31, 628 (2005) [Plasma Phys. Rep. 31, 577 (2005)].

    Google Scholar 

  23. M. I. Rabinovich, Usp. Fiz. Nauk 125, 123 (1978) [Sov. Phys. Usp. 21, 443 (1978)].

    MathSciNet  Google Scholar 

  24. K.-D. Zastrow, J. M. Adams, Yu. Baranov, et al., Plasma Phys. Controlled Fusion 49, B255 (2004).

    Google Scholar 

  25. F. Wagner, G. Becker, K. Behringer, et al., Phys. Rev. Lett. 49, 1408 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 82, No. 6, 2005, pp. 395–406.

Original Russian Text Copyright © 2005 by Pastukhov, Chudin.

A member of the editorial board of the journal since 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastukhov, V.P., Chudin, N.V. Self-consistent turbulent convection in a magnetized plasma. Jetp Lett. 82, 356–365 (2005). https://doi.org/10.1134/1.2137373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2137373

PACS numbers

Navigation