Skip to main content
Log in

A model of the separation of intrinsic charge carriers—Protons and orientational defects—at the crystallization front of water

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A mechanism and the corresponding mathematical model of the formation of the crystallization potential of water, based on protons and orientational defects, are considered. On the basis of the comparison with the known model based on impurity ions, it is shown that it is orientational defects that are responsible for the formation of the crystallization potential of diluted solutions at a crystallization rate of 10−5 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Workman and S. E. Reynolds, Phys. Rev. 78, 254 (1950).

    Article  ADS  Google Scholar 

  2. L. G. Kachurin and V. I. Bekryaev, Dokl. Akad. Nauk SSSR 130(1), 57 (1960) [Sov. Phys. Dokl. 5, 137 (1960)].

    Google Scholar 

  3. A. A. Shibkov, Yu. I. Golovin, M. A. Zheltov, et al., J. Cryst. Growth 236, 434 (2002).

    Article  Google Scholar 

  4. Yu. I. Golovin, A. A. Shibkov, M. A. Zheltov, et al., Kondens. Sredy Mezhfaz. Granitsy 1(4), 304 (1999).

    Google Scholar 

  5. L. G. Kachurin, V. I. Bekryaev, and V. F. Psalomshchikov, Dokl. Akad. Nauk SSSR 174(5), 1122 (1967).

    Google Scholar 

  6. A. A. Mel’nikova, Kristallografiya 14(3), 548 (1969) [Sov. Phys. Crystallogr. 14, 464 (1969)].

    Google Scholar 

  7. B. L. Berri, I. O. Grigorov, L. G. Kachurin, et al., Problems of Engineering Glaciology (Nauka, Novosibirsk, 1986), p. 24 [in Russian].

    Google Scholar 

  8. L. G. Kachurin and N. O. Grigorov, Zh. Fiz. Khim. 51(7), 2864 (1977).

    Google Scholar 

  9. O. M. Rozental’ and F. E. Chetin, Multilayer Structural Ordering in Heterogeneous Processes of Ice Formation (Izd. Gos. Ped. Inst., Sverdlovsk, 1974) [in Russian].

    Google Scholar 

  10. A. A. Chernov and A. M. Mel’nikova, Kristallografiya 16(3), 477 (1971) [Sov. Phys. Crystallogr. 16, 404 (1971)].

    Google Scholar 

  11. A. A. Chernov and A. M. Mel’nikova, Kristallografiya 16(3), 488 (1971) [Sov. Phys. Crystallogr. 16, 413 (1971)].

    Google Scholar 

  12. L. G. Kachurin, Elektrokhimiya 6(9), 1294 (1970).

    Google Scholar 

  13. N. Maeno, The Science of Ice (Hokkaido Univ. Press, Sapporo, 1984; Mir, Moscow, 1988).

    Google Scholar 

  14. P. V. Hobbs, Ice Physics (Clarendon, Oxford, 1974).

    Google Scholar 

  15. A. V. Shavlov, Ice under Structural Transformations (Nauka, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  16. A. V. Shavlov, Kriosfera Zemli 2(2), 58 (1998).

    Google Scholar 

  17. S. M. Ryvkin, Photoelectric Effects in Semiconductors (Fizmatlit, Moscow, 1963; Consultants Bureau, New York, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 50, No. 6, 2005, pp. 1135–1140.

Original Russian Text Copyright © 2005 by Shavlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shavlov, A.V. A model of the separation of intrinsic charge carriers—Protons and orientational defects—at the crystallization front of water. Crystallogr. Rep. 50, 1055–1060 (2005). https://doi.org/10.1134/1.2132416

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2132416

Keywords

Navigation