Skip to main content
Log in

Thermally stimulated relaxation of misfit strains in Si1−x Gex/Si(100) heterostructures with different buffer layers

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The regularities of the defect formation in Si1−x Gex/Si heterostructures (x = 0.15 and 0.30), consisting of a low-temperature Si buffer layer and a SiGe solid solution, during their growth and subsequent annealings at temperatures 550–650°C are investigated by the methods of optical and transmission electron microscopy and X-ray diffraction. It is shown that the misfit-strain relaxation by plastic deformation under the conditions studied occurs most intensively in heterostructures with low-temperature SiGe buffer layers. The maximum degree of misfit-strain relaxation (no higher than 45%) is observed in the heterostructures with x = 0.30 after annealing at 650°C. The results obtained are explained by the effect of the nature and concentration of dislocation-nucleation centers, existing in low-temperature buffer layers, on the characteristics of the formation of a dislocation structure in the heterostructures under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hull, J. C. Bean, and C. Buescher, J. Appl. Phys. 66, 5837 (1989).

    Article  ADS  Google Scholar 

  2. L. B. Frend, J. Appl. Phys. 66, 2073 (1990).

    ADS  Google Scholar 

  3. L. Liu, C. D. Moore, G. D. U’Ren, et al., Appl. Phys. Lett. 75, 1586 (1999).

    ADS  Google Scholar 

  4. Y. H. Luo, J. L. Lin, G. Jin, et al., J. Electron. Mater. 29, 950 (2000).

    Google Scholar 

  5. H. Chen, L. W. Guo, O. Cui, et al., J. Appl. Phys. 79, 1167 (1996).

    ADS  Google Scholar 

  6. P. M. Mooney, J. L. Jorddan-Sweet, K. Jsmail, et al., Appl. Phys. Lett. 67, 2373 (1995).

    Article  ADS  Google Scholar 

  7. Y. H. Luo, J. Wan, R. L. Forest, et al., Appl. Phys. Lett. 78, 454 (2001).

    ADS  Google Scholar 

  8. E. A. Fitzgerald, Mater. Sci. Rep. 7, 87 (1991).

    Article  Google Scholar 

  9. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  ADS  Google Scholar 

  10. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 52, 852 (1988).

    Article  ADS  Google Scholar 

  11. J. W. Matthews and A. E. Blacslee, J. Cryst. Growth 27, 118 (1974).

    Article  Google Scholar 

  12. J. W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  Google Scholar 

  13. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 53, 2498 (1988).

    ADS  Google Scholar 

  14. F. K. LeGouse, B. S. Meyerson, J. F. Morar, and P. D. Kircher, J. Appl. Phys. 71, 4230 (1992).

    ADS  Google Scholar 

  15. E. Kasper, K. Ljutovich, M. Baner, and M. Ochine, Thin Solid Films 336, 319 (1998).

    Article  Google Scholar 

  16. M. R. Re, S. Scalese, S. Mirabella, et al., J. Cryst. Growth 227–228, 749 (2001).

    Google Scholar 

  17. M. Bauer, K. Lyutovich, M. Oehme, et al., Thin Solid Films 369, 152 (2000).

    Article  Google Scholar 

  18. D. C. Houghton, J. Appl. Phys. 70, 2136 (1991).

    Article  ADS  Google Scholar 

  19. R. Beanland, J. Appl. Phys. 72, 4031 (1992).

    Article  ADS  Google Scholar 

  20. V. I. Vdovin, T. G. Yugova, M. M. Rzaev, et al., Phys. Status Solidi C 2(6), 1938 (2005).

    Google Scholar 

  21. T. G. Yugova, V. I. Vdovin, M. G. Mil’vidski, et al., Thin Solid Films 336, 112 (1998).

    Article  Google Scholar 

  22. M. Rzaev, V. Vdovin, and T. Yugova, Mater. Sci. Semicond. Process. 8, 137 (2005).

    Article  Google Scholar 

  23. T. G. Yugova, M. G. Mil’vidskii, and V. I. Vdovin, Fiz. Tverd. Tela (St. Petersburg) 46, 1476 (2004) [Phys. Solid State 46, 1520 (2004)].

    Google Scholar 

  24. Cs. Szeles, P. Asoka-Kumar, K. G. Lynn, et al., Appl. Phys. Lett. 66, 2855 (1995).

    Article  ADS  Google Scholar 

  25. T. Ueno, T. Irisawa, Y. Shiraki, et al., Thin Solid Films 369, 320 (2000).

    Article  Google Scholar 

  26. D. D. Perovic and D. C. Houghton, Inst. Phys. Conf. Ser. 146, 117 (1995).

    Google Scholar 

  27. V. I. Vdovin, M. G. Mil’vidskii, and T. G. Yugova, Kristallografiya 50(5), 915 (2005) [Crystallogr. Rep. 50, 849 (2005)].

    Google Scholar 

  28. R. Hull, J. C. Bean, L. J. Peticolas, et al., Appl. Phys. Lett. 65, 327 (1994).

    Article  ADS  Google Scholar 

  29. R. Hull and J. C. Bean, Appl. Phys. Lett. 54, 925 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 50, No. 6, 2005, pp. 1099–1106.

Original Russian Text Copyright © 2005 by Yugova, Mil’vidski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Rzaev, Schäffler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yugova, T.G., Mil’vidskii, M.G., Rzaev, M.M. et al. Thermally stimulated relaxation of misfit strains in Si1−x Gex/Si(100) heterostructures with different buffer layers. Crystallogr. Rep. 50, 1020–1026 (2005). https://doi.org/10.1134/1.2132412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2132412

Keywords

Navigation