Skip to main content
Log in

Properties of nanogranular metal-dielectric composites in strong electric fields and the cluster electronic states

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical resistance of granular structures with ferromagnetic and nonferromagnetic metal nanoparticles embedded in concentrations below the percolation threshold was studied in strong electric fields. More specifically, amorphous silicon dioxide containing nanoparticles of a Co41Fe39B20 alloy [(a-SiO2)100− x (Co41Fe39B20)x structure] and amorphous hydrogenated carbon with embedded copper nanoparticles, a-C: H(Cu), were investigated. The (a-SiO2)100−x (Co41Fe39B20)x structures revealed changes in the electrical resistance and magnetoresistance after being subjected to a strong electric field. The changes could have reversible or irreversible character and depended on the electrical prehistory of the sample. A strong electric field caused not only a decrease in the electrical resistance but also a decrease in the magnetoresistance, although the magnetization of the sample remained unchanged. The temperature dependences of the current in a-C: H(Cu) films exhibited conductivity peaks under a decrease in temperature in strong electric fields and transitions from the insulating to conducting state; after the field was removed, there occurred reverse transitions and conductivity relaxation, as well as pronounced changes in the dielectric permittivity and an increase in dielectric losses with increasing temperature. A model of cluster electronic states (CESs) is proposed to account for the experimental findings. These states are created by electrons of the metal grains and matrix defects near the Fermi surface. The observed features find explanation in a change in the CES structure. A strong electric field does not bring about d-electron delocalization, and the fraction of d electron wave functions in a CES is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Vyshenski, Pis’ma Zh. Éksp. Teor. Fiz. 61(1–2), 105 (1995) [JETP Lett. 61, 111 (1995)].

    Google Scholar 

  2. S. V. Vyshenski, Pis’ma Zh. Éksp. Teor. Fiz. 64(7–8), 543 (1996) [JETP Lett. 64, 592 (1996)].

    Google Scholar 

  3. S. A. Gurevich, V. V. Horenko, T. A. Zarayskaya, L. Yu. Kupriyanov, M. Yu Kupriyanov, T. N. Vasilevskaya, and S. V. Vyshenski, Pis’ma Zh. Éksp. Teor. Fiz. 64(9–10), 684 (1996) [JETP Lett. 64, 736 (1996)].

    Google Scholar 

  4. S. Mitani, K. Takanashi, K. Yakushiji, and H. Fujimori, J. Appl. Phys. 83(11), 6524 (1998).

    Article  ADS  Google Scholar 

  5. B. A. Aronzon, A. B. Granovskii, D. Yu. Kovalev, E. Z. Meilikhov, V. V. Ryl’kov, and M. V. Sedova, Pis’ma Zh. Éksp. Teor. Fiz. 71(11), 687 (2000) [JETP Lett. 71 (11), 469 (2000)].

    Google Scholar 

  6. B. A. Aronzon, D. Yu. Kovalev, A. N. Logar’kov, E. Z. Meilikhov, V. V. Ryl’kov, M. A. Sedova, N. Negre, M. Goiran, and J. Leotin, Pis’ma Zh. Éksp. Teor. Fiz. 70(2), 87 (1999) [JETP Lett. 70 (2), 90 (1999)].

    Google Scholar 

  7. L. V. Lutsev, S. V. Yakovlev, and V. I. Siklitskii, Fiz. Tverd. Tela (St. Petersburg) 42(6), 1105 (2000) [Phys. Solid State 42 (6), 1139 (2000)

    Google Scholar 

  8. V. I. Siklitskii, L. V. Lutsev, and M. V. Baidakova, Pis’ma Zh. Tekh. Fiz. 28(7), 46 (2002) [Tech. Phys. Lett. 28 (7), 283 (2002)].

    Google Scholar 

  9. L. V. Lutsev, N. E. Kazantseva, I. A. Tchmutin, N. G. Ryvkina, Yu. E. Kalinin, and A. V. Sitnikoff, J. Phys.: Condens. Matter 15(22), 3665 (2003).

    Article  ADS  Google Scholar 

  10. L. I. Glazman and K. A. Matveev, Zh. Éksp. Teor. Fiz. 94(6), 332 (1988) [Sov. Phys. JETP 67, 1276 (1988)].

    Google Scholar 

  11. L. I. Glazman and R. I. Shekhter, Zh. Éksp. Teor. Fiz. 94(1), 292 (1988) [Sov. Phys. JETP 67, 163 (1988)].

    Google Scholar 

  12. P. W. Anderson, Phys. Rev. 109(5), 1492 (1958).

    Article  ADS  Google Scholar 

  13. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979; Mir, Moscow, 1982), Vols. 1, 2.

    Google Scholar 

  14. L. V. Lutsev, T. K. Zvonareva, and V. M. Lebedev, Pis’ma Zh. Tekh. Fiz. 27(15), 84 (2001) [Tech. Phys. Lett. 27, 659 (2001)].

    Google Scholar 

  15. L. V. Lutsev, Yu. E. Kalinin, A. V. Sitnikov, and O. V. Stognei, Fiz. Tverd. Tela (St. Petersburg) 44(10), 1802 (2002) [Phys. Solid State 44 (10), 1889 (2002)].

    Google Scholar 

  16. Yu. E. Kalinin, A. N. Remizov, and A. V. Sitnikov, Fiz. Tverd. Tela (St. Petersburg) 46(11), 2076 (2004) [Phys. Solid State 46 (11), 2146 (2004)].

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1984), Vol. 8.

    Google Scholar 

  18. V. I. Ivanov-Omskii, A. V. Tolmachev, and S. G. Yastrebov, Philos. Mag. B 73(4), 715 (1996).

    Google Scholar 

  19. V. I. Siklitsky, S. G. Yastrebov, and A. B. Lodygin, Chaos, Solitons, Fractals 10(12), 2067 (1999).

    Article  Google Scholar 

  20. V. I. Ivanov-Omskii, V. I. Siklitskii, and S. G. Yastrebov, Fiz. Tverd. Tela (St. Petersburg) 40(3), 568 (1998) [Phys. Solid State 40 (3), 524 (1998)].

    Google Scholar 

  21. J. Robertson, Adv. Phys. 35(4), 317 (1986).

    Article  ADS  Google Scholar 

  22. T. K. Zvonareva, V. M. Lebedev, T. A. Polyanskaya, L. V. Sharonova, and V. I. Ivanov-Omskii, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34(9), 1135 (2000) [Semiconductors 34 (9), 1094 (2000)].

    Google Scholar 

  23. J. Mathon, Phys. Rev. B: Condens. Matter 56(18), 11810 (1997).

    Google Scholar 

  24. J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 11, 2005, pp. 2080–2090.

Original Russian Text Copyright © 2005 by Lutsev, Kopytin, Sitnikov, Stognei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutsev, L.V., Kopytin, M.N., Sitnikov, A.V. et al. Properties of nanogranular metal-dielectric composites in strong electric fields and the cluster electronic states. Phys. Solid State 47, 2169–2179 (2005). https://doi.org/10.1134/1.2131164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2131164

Keywords

Navigation