Skip to main content
Log in

Effect of an electric field on the carrier collection efficiency of InAs quantum dots

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Individual and multiquantum dots of InAs are studied by means of microphotoluminescence in the case where, in addition to the principal laser exciting photoluminescence, second infrared laser is used. It is demonstrated that the absorption of the infrared photons effectively creates free holes in the sample, which leads to both a change in the charge state of a quantum dot and to a considerable reduction of their photoluminescence signal. The latter effect is explained in terms of effective screening of the internal electric field, facilitating carrier transport along the plane of a wetting layer, by the surplus holes from the infrared laser. It is shown that the effect of quenching of quantum dot photoluminescence gradually disappears at increased sample temperature (T) and/or dot density. This fact is due to the essentially increased value of quantum dot collection efficiency, which could be achieved at elevated sample temperatures for individual quantum dots or even at low T for the case of multiquantum dots. It is suggested that the observed phenomena can be widely used in practice to effectively manipulate the collection efficiency and the charge state of quantum-dot-based optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots (Springer, Berlin, 1998).

    Google Scholar 

  2. D. Gammon and D. G. Steel, Phys. Today 55(10), 36 (2002).

    Google Scholar 

  3. L. Harris, D. J. Mawbray, M. S. Skolnick, M. Hopkinson, and G. Hill, Appl. Phys. Lett. 73(7), 969 (1998).

    Article  ADS  Google Scholar 

  4. S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett. 73(14), 2003 (1998).

    Article  ADS  Google Scholar 

  5. J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 73(18), 2618 (1998).

    Article  ADS  Google Scholar 

  6. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Willey, London, 1999).

    Google Scholar 

  7. K. H. Schmidt, G. Medeiros-Ribeiro, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett. 70(13), 1727 (1997); J. M. Garcia, T. Mankad, P. O. Holtz, P. J. Wellman, and P. M. Petroff, Appl. Phys. Lett. 72 (24), 3172 (1998); J. M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, Appl. Phys. Lett. 71 (14), 2014 (1997).

    Article  ADS  Google Scholar 

  8. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. B: Condens. Matter 56(16), 10 435 (1997).

    Google Scholar 

  9. A. W. E. Minnaert, A. Yu. Silov, W. van der Vleuten, J. E. M. Haverkort, and J. H. Wolter, Phys. Rev. B: Condens. Matter 63(7), 075 303 (2001); F. Findeis, A. Zrenner, G. Böhm, and G. Abstreiter, Phys. Rev. B: Condens. Matter 61 (16), R10 579 (2000); R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, Phys. Rev. Lett. 83 (22), 4654 (1999).

    Google Scholar 

  10. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, Phys. Rev. B: Condens. Matter 54(16), 11 532 (1996); U. Bockelmann and T. Egeler, Phys. Rev. B: Condens. Matter 46 (23), 15 574 (1992); A. Rack, R. Wetzler, A. Wacker, and E. Schöll, Phys. Rev. B: Condens. Matter 66 (16), 165 429 (2002); S. Raymond, K. Hinzer, S. Fafard, and J. L. Merz, Phys. Rev. B: Condens. Matter 61 (24), R 16331 (2000).

  11. P. P. Paskov, P. O. Holtz, B. Monemar, J. M. Garcia, W. V. Schoenfeld, and P. M. Petroff, Appl. Phys. Lett. 77(6), 812 (2000).

    Article  ADS  Google Scholar 

  12. Y. Toda, O. Moriwaki, M. Nishioka, and Y. Arakawa, Phys. Rev. Lett. 82(20), 4114 (1999).

    Article  ADS  Google Scholar 

  13. A. F. G. Monte, J. J. Finley, A. D. Ashmore, A. M. Fox, D. J. Mowbray, M. S. Skolnick, and M. Hopkinson, J. Appl. Phys. 93(6), 3524 (2003).

    Article  ADS  Google Scholar 

  14. C. Lobo, R. Leon, S. Marcinkevičius, W. Yang, P. Sercel, X. Z. Liao, J. Zou, and D. J. H. Cockayne, Phys. Rev. B: Condens. Matter 60(24), 16 647 (1999).

    Google Scholar 

  15. M. M. Sobolev, A. R. Kovsh, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maksimov, and N. N. Ledentsov, Semiconductors 31(10), 1074 (1997).

    Article  ADS  Google Scholar 

  16. S. Marcinkevičius, J. Siegert, R. Leon, B. Čechavičius, B. Magness, W. Taylor, and C. Lobo, Phys. Rev. B: Condens. Matter 66(23), 235 314 (2002).

    Google Scholar 

  17. S. Ménard, J. Beerens, D. Morris, V. Aimez, J. Beauvais, and S. Fafard, J. Vac. Sci. Technol. 20(4), 1501 (2002).

    Google Scholar 

  18. S. Marcinkevičius, A. Gaarder, and R. Leon, Phys. Rev. B: Condens. Matter 64(11), 115 307 (2001).

    Google Scholar 

  19. S. Marcinkevičius and R. Leon, Appl. Phys. Lett. 76(17), 2406 (2000).

    ADS  Google Scholar 

  20. P. W. Fry, J. J. Finley, L. R. Wilson, A. Lemaitre, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, and J. C. Clark, Appl. Phys. Lett. 77(26), 4344 (2000).

    Article  ADS  Google Scholar 

  21. E. S. Moskalenko, V. Donchev, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Phys. Rev. B: Condens. Matter 68(15), 155 317 (2003).

    Google Scholar 

  22. P. Silverberg, P. Omling, and L. Samuelson, Appl. Phys. Lett. 52(20), 1689 (1988).

    Article  ADS  Google Scholar 

  23. D. A. Mazurenko, A. V. Scherbakov, A. V. Akimov, A. J. Kent, and M. Henini, Semicond. Sci. Technol. 14(12), 1132 (1999).

    Article  ADS  Google Scholar 

  24. M. Sugisaki, H. W. Ren, K. Nishi, and Y. Masumoto, Phys. Rev. Lett. 86(21), 4883 (2001).

    Article  ADS  Google Scholar 

  25. E. S. Moskalenko, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Phys. Rev. B: Condens. Matter 64(8), 085 302 (2001).

    Google Scholar 

  26. A. V. Akimov, V. V. Krivolapchuk, N. K. Poletaev, and V. G. Shofman, Semiconductors 27(2), 171 (1993).

    ADS  Google Scholar 

  27. K. F. Karlsson, E. S. Moskalenko, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett. 78(19), 2952 (2001).

    Article  ADS  Google Scholar 

  28. H. D. Robinson and B. B. Goldberg, Phys. Rev. B: Condens. Matter 61(8), R5086 (2000).

  29. J. Seufert, R. Weigand, G. Bacher, T. Kummell, A. Forchel, K. Leonardi, and D. Hommel, Appl. Phys. Lett. 76(14), 1872 (2000).

    Article  ADS  Google Scholar 

  30. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (North-Holland, Amsterdam, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Fizika Tverdogo Tela, Vol. 47, No. 11, 2005, pp. 2066–2073.

Original English Text Copyright © 2005 by Moskalenko, Karlsson, Donchev, Holtz, Schoenfeld, Petroff.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskalenko, E.S., Karlsson, K.F., Donchev, V. et al. Effect of an electric field on the carrier collection efficiency of InAs quantum dots. Phys. Solid State 47, 2154–2161 (2005). https://doi.org/10.1134/1.2131162

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2131162

Keywords

Navigation