Skip to main content
Log in

On the theory of diffraction of light in photonic crystals with allowance for interlayer disordering

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Electrodynamic Green’s functions are used to construct an analytical theory of the Bragg diffraction of polarized light in photonic crystals having a close-packed structure. For opal-based photonic crystals, the Bragg diffraction intensity is calculated with allowance for permittivity periodic modulation and for the presence of an optical crystal boundary and interlayer disordering, which usually appears during sample growth. A comprehensive study is made of the effect of the structure disorder caused by the random packing of growth layers on diffraction. For a random constructed twinned fcc structure, the average structure factor and the scattering (diffraction) cross sections (which are dependent on the linear polarization of the incident and scattered waves) are calculated. Numerical examples are used to show that the theory developed can be applied to analyze and process experimental diffraction patterns of real photonic crystals having a close-packed structure disordered in one direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

  2. J. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  3. J. C. Slater, Insulators, Semiconductors, and Metals (McGraw-Hill, New York, 1967; Mir, Moscow, 1969), Chap. 6.

    Google Scholar 

  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding of Flow of Light (Princeton University Press, Princeton, 1995).

    Google Scholar 

  5. E. Yablonovitch, Phys. Rev. Lett. 58(20), 2059 (1987); E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67 (17), 2295 (1991); E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. A. Joannopoulos, Phys. Rev. Lett. 67 (24), 3380 (1991).

    Article  ADS  Google Scholar 

  6. Confined Electrons and Photons: New Physics and Applications, Ed. by E. Burstein and C. Weisbuch (Plenum, New York, 1995).

    Google Scholar 

  7. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Mesegure, H. Migues, J. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, Nature (London) 405, 437 (2000).

    ADS  Google Scholar 

  8. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samilovich, S. M. Samoilovich, and Y. A. Vlasov, Nuovo Cimento Soc. Ital. Fis., D 17, 1349 (1995).

    Google Scholar 

  9. K. Buch and S. John, Phys. Rev. B: Condens. Matter 58(3), 3896 (1998).

    ADS  Google Scholar 

  10. A. V. Baryshev, A. V. Ankudinov, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Fiz. Tverd. Tela (St. Petersburg) 44(9), 1573 (2002) [Phys. Solid State 44 (9), 1648 (2002)].

    Google Scholar 

  11. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, Fiz. Tverd. Tela (St. Petersburg) 46(7), 1291 (2004) [Phys. Solid State 46 (7), 1331 (2004)].

    Google Scholar 

  12. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Fiz. Tverd. Tela (St. Petersburg) 45(3), 434 (2003) [Phys. Solid State 45 (3), 459 (2003)].

    Google Scholar 

  13. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, K. B. Samusev, and D. E. Usvyat, Physica E (Amsterdam) 17, 426 (2003).

    ADS  Google Scholar 

  14. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, K. B. Samusev, D. E. Usvyat, and M. F. Limonov, Phys. Rev. B: Condens. Matter 70(11), 113 104 (2004).

    Google Scholar 

  15. H. Jeffreys and B. Swirles, Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1966; Mir, Moscow, 1969), Vol. 3.

    Google Scholar 

  16. V. A. Kosobukin, Fiz. Tverd. Tela (St. Petersburg) 39(3), 560 (1997) [Phys. Solid State 39 (3), 488 (1997)].

    Google Scholar 

  17. V. N. Astratov, A. M. Adavi, S. Fricker, M. S. Skolnick, D. M. Whittacker, and P. N. Pusey, Phys. Rev. B: Condens. Matter 66(16), 165 215 (2002).

    Google Scholar 

  18. R. M. Amos, J. G. Rarity, P. R. Tapster, T. J. Shepherd, and S. C. Kitson, Phys. Rev. B: Condens. Matter 61(3), 2929 (2000).

    ADS  Google Scholar 

  19. W. Loose and B. J. Ackerson, J. Chem. Phys. 101(9), 7211 (1994).

    Article  ADS  Google Scholar 

  20. H. M. van Driel and W. L. Vos, Phys. Rev. B: Condens. Matter 62(15), 9872 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 11, 2005, pp. 1954–1963.

Original Russian Text Copyright © 2005 by Kosobukin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosobukin, V.A. On the theory of diffraction of light in photonic crystals with allowance for interlayer disordering. Phys. Solid State 47, 2035–2045 (2005). https://doi.org/10.1134/1.2131141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2131141

Keywords

Navigation