Skip to main content
Log in

Electrical conductivity and superconductivity of ordered indium-opal nanocomposites

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical conductivity is measured experimentally and the parameters of the superconducting transition are determined in a regular spatial network of multiply connected submicron-sized indium grains embedded in voids of an ordered opal dielectric matrix. The In-opal nanocomposite was prepared by pressure injection of the molten metal into voids of opal samples. Arrays of In grains of different sizes were produced by properly varying the characteristic geometric sizes of the opal voids, which offered the possibility of observing quantitative and qualitative changes in the temperature dependence of electrical resistance and studying the size effects on the critical temperature and critical magnetic field in the In-opal nanocomposites. It was found that, as the coherence length becomes comparable to the size of the superconducting grains, the parameters of the superconducting transition in the nanocomposite increase sharply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Matsuo, H. Sugiura, and S. Noguchi, J. Low Temp. Phys. 15, 481 (1974).

    Article  Google Scholar 

  2. V. L. Ginzburg, Zh. Éksp. Teor. Fiz. 34, 113 (1958) [Sov. Phys. JETP 7, 78 (1958)].

    MATH  Google Scholar 

  3. V. V. Moshchalkov, Y. Bruynseraede, L. van Look, M. J. van Bael, and A. Tonomura, in Handbook of Nanostructured Materials and Nanotechnology, Ed. by H. S. Nalwa (Academic, San Diego, 2000), Vol. 3, p. 451.

    Google Scholar 

  4. T. D. Clark, Phys. Rev. B: Solid State 8, 137 (1973).

    ADS  Google Scholar 

  5. P. Santhanam, C. C. Chi, S. J. Wind, M. S. Brady, and J. J. Bucchignano, Phys. Rev. Lett. 66, 2254 (1991).

    Article  ADS  Google Scholar 

  6. Y. K. Kwong, K. Lin, P. J. Hakonen, M. S. Isaacson, and J. M. Parpia, Phys. Rev. B: Condens. Matter 44, 462 (1991).

    ADS  Google Scholar 

  7. W. A. Little and R. D. Parks, Phys. Rev. Lett. 9, 9 (1962).

    Article  ADS  Google Scholar 

  8. E. V. Charnaya, C. Tein, K. J. Lin, C. S. Wur, and Yu. A. Kumzerov, Phys. Rev. B: Condens. Matter 58, 467 (1998).

    ADS  Google Scholar 

  9. J. H. P. Watson, J. Appl. Phys. 37, 516 (1966).

    Google Scholar 

  10. N. K. Hindley and J. H. P. Watson, Phys. Rev. 183, 525 (1969).

    Article  ADS  Google Scholar 

  11. J. H. P. Watson, Phys. Rev. B: Solid State 2, 1282 (1970).

    ADS  Google Scholar 

  12. V. N. Bogomolov, V. V. Zhuravlev, A. I. Zadorozhnii, E. V. Kolla, and Yu. A. Kumzerov, Pis’ma Zh. Éksp. Teor. Fiz. 36, 298 (1982) [JETP Lett. 36, 365 (1982)].

    Google Scholar 

  13. S. G. Romanov and D. V. Shamshur, Fiz. Tverd. Tela (St. Petersburg) 42, 581 (2000) [Phys. Solid State 42, 594 (2000)].

    Google Scholar 

  14. S. G. Romanov, Pis’ma Zh. Éksp. Teor. Fiz. 59, 778 (1994) [JETP Lett. 59, 809 (1994)].

    Google Scholar 

  15. V. N. Bogomolov, L. K. Kazantseva, E. V. Kolla, and Yu. A. Kumzerov, Fiz. Tverd. Tela (Leningrad) 29, 622 (1987) [Sov. Phys. Solid State 29, 359 (1987)].

    Google Scholar 

  16. V. B. Aleskovskii, Chemistry of the Solid State (Vysshaya Shkola, Moscow, 1978) [in Russian].

    Google Scholar 

  17. S. G. Romanov, A. V. Fokin, and K. Kh. Babamuratov, Pis’ma Zh. Éksp. Teor. Fiz. 58, 883 (1993) [JETP Lett. 58, 824 (1993)].

    Google Scholar 

  18. V. V. Tretyakov, S. G. Romanov, A. V. Fokin, and V. I. Alperovich, Mikrochim. Acta, Suppl. 15, 211 (1998).

    Google Scholar 

  19. V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, Yu. A. Kumrezov, V. P. Petranovskii, S. G. Romanov, and L. A. Samoilovich, Kristallografiya 38, 111 (1993) [Crystallogr. Rep. 38, 348 (1993)].

    Google Scholar 

  20. D. V. Shamshur, A. V. Chernyaev, A. V. Fokin, and S. G. Romanov, Nanostructures: Physics and Technology (Ioffe Institute, St. Petersburg, 2000), p. 311.

    Google Scholar 

  21. Zh. M. Éliashberg, Zh. Éksp. Teor. Fiz. 38, 996 (1960) [Sov. Phys. JETP 11, 716 (1960)].

    Google Scholar 

  22. Zh. M. Éliashberg, Zh. Éksp. Teor. Fiz. 39, 1437 (1960) [Sov. Phys. JETP 12, 1000 (1960)].

    Google Scholar 

  23. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  24. Yu. A. Kumzerov, in Nanostructured Films and Coatings, Ed. by G. M. Chow, I. A. Ovid’ko, and T. Tsakalakos (Kluwer Academic, Dordrecht, 2000), NATO Sci. Ser., 3, Vol. 78, p. 63.

    Google Scholar 

  25. Encyclopedia of Physics, Ed. by S. Flugge (Springer, Berlin, 1956), Vol. XIX, p. 173.

    Google Scholar 

  26. Tables of Physical Quantities (Atomizdat, Moscow, 1976) [in Russian].

  27. J. McDonald, in Low Temperature Physics, Ed. by C. DeWitt (Springer, Berlin, 1956; Inostrannaya Literatura, Moscow, 1959).

    Google Scholar 

  28. G. J. Dolan, J. Low Temp. Phys. 15, 133 (1974).

    Google Scholar 

  29. B. L. Brandt, R. D. Parks, and R. D. Chaudhari, J. Low Temp. Phys. 4, 41 (1971).

    Google Scholar 

  30. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JETP 9, 1364 (1959)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 11, 2005, pp. 1927–1936.

Original Russian Text Copyright © 2005 by Shamshur, Chernyaev, Fokin, Romanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamshur, D.V., Chernyaev, A.V., Fokin, A.V. et al. Electrical conductivity and superconductivity of ordered indium-opal nanocomposites. Phys. Solid State 47, 2005–2014 (2005). https://doi.org/10.1134/1.2131136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2131136

Keywords

Navigation