Skip to main content
Log in

Destruction of the Fermi surface due to pseudogap fluctuations in strongly correlated systems

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

We generalize the dynamical-mean field theory (DMFT) by including into the DMFT equations dependence on the correlation length of the pseudogap fluctuations via the additional (momentum dependent) self-energy Σk. This self-energy describes nonlocal dynamical correlations induced by short-ranged collective SDW-like antiferromagnetic spin (or CDW-like charge) fluctuations. At high enough temperatures, these fluctuations can be viewed as a quenched Gaussian random field with finite correlation length. This generalized DMFT + Σk approach is used for the numerical solution of the weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice with nearest and next nearest neighbor hopping. The effective single impurity problem is solved by using a numerical renormalization group (NRG). Both types of strongly correlated metals, namely, (i) doped Mott insulator and (ii) the case of the bandwidth WU (U-value of local Coulomb interaction) are considered. By calculating profiles of the spectral densities for different parameters of the model, we demonstrate the qualitative picture of Fermi surface destruction and formation of Fermi arcs due to pseudogap fluctuations in qualitative agreement with the ARPES experiments. Blurring of the Fermi surface is enhanced with the growth of the Coulomb interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  2. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001) [Phys. Usp. 44, 515 (2001)].

    Google Scholar 

  3. D. Pines, cond-mat/0404151.

  4. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  5. E. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 1765 (1999) [JETP 88, 347 (1999)].

    Google Scholar 

  6. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    ADS  Google Scholar 

  7. D. Vollhardt, in Correlated Electron Systems, Ed. by V. J. Emery (World Sci., Singapore, 1993), p. 57.

    Google Scholar 

  8. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  9. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).

    Google Scholar 

  11. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, et al., cond-mat/0502612.

  12. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 77, 2070 (1979) [Sov. Phys. JETP 50, 989 (1979)].

    Google Scholar 

  13. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980); Phys. Rev. B 21, 1044 (1980); A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

    Article  ADS  Google Scholar 

  14. R. Bulla, A. C. Hewson, and Th. Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998); R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

    Article  ADS  Google Scholar 

  15. M. R. Norman, M. Randeria, J. C. Campuzano, et al., Nature 382, 51 (1996).

    ADS  Google Scholar 

  16. N. P. Armitage, D. H. Lu, C. Kim, et al., Phys. Rev. Lett. 87, 147003 (2001).

  17. Th. Maier, M. Jarrell, Th. Pruschke, and M. Hettler, Rev. Mod. Phys. (in press); cond-mat/0404055.

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 82, No. 4, 2005, pp. 217–222.

Original English Text Copyright © 2005 by Kuchinskii, Nekrasov, Sadovskii.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchinskii, E.Z., Nekrasov, I.A. & Sadovskii, M.V. Destruction of the Fermi surface due to pseudogap fluctuations in strongly correlated systems. Jetp Lett. 82, 198–203 (2005). https://doi.org/10.1134/1.2121814

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2121814

PACS numbers

Navigation