Skip to main content
Log in

The influence of the icosahedral percolation transition in supercooled liquid iron on the diffusion mobility of atoms

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The paper develops concepts of the structure of pure amorphous metals and atomic mechanisms of its formation. It is shown that a stable percolation cluster of interpenetrating and contacting icosahedra whose vertices and centers are occupied by atoms is formed under the conditions of isothermal annealing of instantaneously supercooled iron melt only below the critical temperature ∼1180 K identified with the glass transition temperature. The duration of isothermal annealing up to the formation of the icosahedral percolation cluster does not exceed ∼1.5 × 10−11 s at 900–1180 K. The time of the beginning of homogeneous nucleation was found to be minimum at the critical temperature above which stable icosahedral percolation cluster did not form. Arguments are provided in favor of the assumption that the formation of icosahedral percolation cluster interferes with the beginning of crystallization. A quantitative model is suggested to describe the diffusion mobility of atoms in metallic glasses. In this model, the mean-square displacement of atoms is represented as the sum of the contributions of the linear (Einstein) and logarithmic components. The latter appears because of irreversible structural relaxation. The icosahedral percolation transition was shown to change the activation parameters of the model jumpwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Cohen and G. S. Grest, Phys. Rev. B 20, 1077 (1979).

    ADS  Google Scholar 

  2. N. N. Medvedev, A. Geiger, and W. Brostow, J. Chem. Phys. 93, 8337 (1990).

    Article  ADS  Google Scholar 

  3. A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 76, 115 (2002) [JETP Lett. 76, 104 (2002)].

    Google Scholar 

  4. A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, Zh. Éksp. Teor. Fiz. 126, 600 (2004) [JETP 99, 522 (2004)].

    Google Scholar 

  5. M. I. Ojovan, Pis’ma Zh. Éksp. Teor. Fiz. 79, 769 (2004) [JETP Lett. 79, 632 (2004)].

    Google Scholar 

  6. R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).

    Article  ADS  Google Scholar 

  7. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  8. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).

    Google Scholar 

  9. V. A. Polukhin and N. A. Vatolin, Modeling of Amorphous Metals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  10. P. H. Gaskell, in Materials Science and Technology, Ed. by J. Zarzycki (VCH, Cambridge, 1991), Vol. 9, p. 175.

    Google Scholar 

  11. V. A. Likhachev and V. E. Shudegov, Organization Principles of Amorphous Structures (S.-Peterb. Gos. Univ., St. Petersburg, 1999) [in Russian].

    Google Scholar 

  12. R. A. Johnson, Phys. Rev. 134, A1329 (1964).

  13. S.-P. Chen, T. Egami, and V. Vitek, Phys. Rev. B 37, 2440 (1988).

    ADS  Google Scholar 

  14. L. J. Lewis, Phys. Rev. B 39, 12954 (1989).

    Google Scholar 

  15. H. M. Pak and M. Doyama, J. Fac. Sci., Univ. Tokyo, Ser. B 30, 111 (1969).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1, 4th ed. (Nauka, Moscow, 1995; Butterworths, London, 1999).

    Google Scholar 

  17. C. J. Smithells, Metals Reference Book, 5th ed. (Butterworths, London, 1976; Metallurgiya, Moscow, 1980).

    Google Scholar 

  18. R. Yamamoto, H. Matsuoka, and M. Doyama, Phys. Status Solidi A 45, 305 (1978).

    Google Scholar 

  19. D. K. Belashchenko, Fiz. Met. Metalloved. 60, 1076 (1985).

    Google Scholar 

  20. A. V. Evteev and A. T. Kosilov, Rasplavy 1, 55 (1998).

    Google Scholar 

  21. A. V. Evteev and A. T. Kosilov, Rasplavy 4, 82 (2001).

    Google Scholar 

  22. A. V. Evteev, A. T. Kosilov, and E. V. Levtchenko, Acta Mater. 51, 2665 (2003).

    Article  Google Scholar 

  23. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  24. A. V. Evteev, A. T. Kosilov, and A. V. Milenin, Pis’ma Zh. Éksp. Teor. Fiz. 71, 294 (2000) [JETP Lett. 71, 201 (2000)].

    Google Scholar 

  25. A. V. Evteev, A. T. Kosilov, and A. V. Milenin, Fiz. Tverd. Tela (St. Petersburg) 43, 2187 (2001) [Phys. Solid State 43, 2284 (2001)].

    Google Scholar 

  26. W. Primak, Phys. Rev. 100, 1677 (1955).

    Article  ADS  Google Scholar 

  27. V. A. Khonik, A. T. Kosilov, V. A. Mikhailov, and V. V. Sviridov, Acta Mater. 46, 3399 (1998).

    Article  Google Scholar 

  28. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed. (McGraw-Hill, New York, 1968; Nauka, Moscow, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 3, 2005, pp. 607–614.

Original Russian Text Copyright © 2005 by Evteev, Kosilov, Levchenko, Logachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evteev, A.V., Kosilov, A.T., Levchenko, E.V. et al. The influence of the icosahedral percolation transition in supercooled liquid iron on the diffusion mobility of atoms. J. Exp. Theor. Phys. 101, 521–527 (2005). https://doi.org/10.1134/1.2103221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2103221

Keywords

Navigation