Skip to main content
Log in

Tetracritical point and staggered vortex currents in superconducting state

  • Order, Disorder, and Phase Transitions in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A phase diagram reflecting the main features of the typical phase diagram of cuprate superconductors has been studied within the framework of the Ginzburg-Landau phenomenology in the vicinity of a tetracritical point, which appears as a result of the competition of the superconducting and insulating pairing channels. The superconducting pairing under repulsive interaction corresponds to a two-component order parameter, whose relative phase is related to the orbital antiferromagnetic insulating ordering. Under weak doping, the insulating order coexists with the superconductivity at temperatures below the superconducting phase transition temperature and is manifested as a weak pseudogap above this temperature. A part of the pseudogap region adjacent to the superconducting state corresponds to developed fluctuations of the order parameter in the form of quasi-stationary states of noncoherent superconducting pairs and can be interpreted as a strong pseudogap. As the doping level is increased, the system exhibits a phase transition from the region of coexistence of the superconductivity and the orbital antiferromagnetism to the usual superconducting state. In this state, a region of developed fluctuations of the order parameter in the form of quasi-stationary states of uncorrelated orbital circular currents exists near the phase transition line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Lee, N. Nagaosa, and X.-G. Wen, cond-mat/0410445.

  2. S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B 63, 094503 (2001).

    Google Scholar 

  3. S. Chakravarty, Phys. Rev. B 66, 224505 (2002).

    Google Scholar 

  4. G. Zhao, Phys. Rev. B 64, 024503 (2001).

    Google Scholar 

  5. B. H. Brandow, Phys. Rev. B 65, 054503 (2002).

    Google Scholar 

  6. B. I. Halperin and T. M. Rice, Solid State Phys. 21, 115 (1968).

    Google Scholar 

  7. S. Sachdev, Science 288, 475 (2000).

    Article  ADS  Google Scholar 

  8. M. Guidry, L.-A. Wu, Y. Sun, and C.-L. Wu, Phys. Rev. B 63, 134516 (2001).

  9. B. A. Volkov, A. A. Gorbatsevich, Yu. V. Kopaev, and V. V. Tugushev, Zh. Éksp. Teor. Fiz. 81, 729 (1981) [Sov. Phys. JETP 54, 391 (1981)].

    Google Scholar 

  10. J. B. Marston and I. Affleck, Phys. Rev. B 39, 11538 (1989).

    Google Scholar 

  11. D. A. Ivanov, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 84, 3958 (2000).

    Article  ADS  Google Scholar 

  12. C. Nayak, Phys. Rev. B 62, 4880 (2000).

    Article  ADS  Google Scholar 

  13. V. A. Volkov and O. A. Pankratov, Zh. Éksp. Teor. Fiz. 75, 1362 (1978) [Sov. Phys. JETP 48, 687 (1978)].

    Google Scholar 

  14. P. A. Lee, N. Nagaosa, T.-K. Ng, and X.-G. Wen, Phys. Rev. B 57, 6003 (1998); P. A. Lee, cond-mat/0201052.

    ADS  Google Scholar 

  15. V. I. Belyavskii and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 127, 45 (2005) [JETP 100, 39 (2005)].

    Google Scholar 

  16. V. I. Belyavskii, Yu. V. Kopaev, V. M. Sofronov, and S. V. Shevtsov, Zh. Éksp. Teor. Fiz. 124, 1149 (2003) [JETP 97, 1032 (2003)].

    Google Scholar 

  17. V. I. Belyavskii, Yu. V. Kopaev, Yu. N. Togushova, and S. V. Shevtsov, Zh. Éksp. Teor. Fiz. 126, 672 (2004) [JETP 99, 585 (2004)].

    Google Scholar 

  18. V. I. Belyavskii, V. V. Kapaev, and Yu. V. Kopaev, Pis’ma Zh. Éksp. Teor. Fiz. 81, 650 (2005) [JETP Lett. 81, 527 (2005)].

    Google Scholar 

  19. C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).

    ADS  Google Scholar 

  20. P. Fulde and R. A. Ferrel, Phys. Rev. 135, A550 (1964).

    Article  ADS  Google Scholar 

  21. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Éksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].

    Google Scholar 

  22. V. I. Belyavskii, V. V. Kapaev, and Yu. V. Kopaev, Pis’ma Zh. Éksp. Teor. Fiz. 76, 51 (2002) [JETP Lett. 76, 44 (2002)].

    Google Scholar 

  23. A. A. Abrikosov, Physica C (Amsterdam) 341–348, 97 (2000).

    Google Scholar 

  24. E. G. Maksimov, Usp. Fiz. Nauk 170, 1033 (2000) [Phys. Usp. 43, 965 (2000)].

    Google Scholar 

  25. A. S. Alexandrov and P. E. Kornilovitch, J. Phys.: Condens. Matter 14, 5337 (2002).

    Article  ADS  Google Scholar 

  26. A. V. Chubukov, D. Pines, and J. Schmalian, in The Physics of Conventional and Unconventional Superconductors, Ed. by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2002).

    Google Scholar 

  27. P. W. Anderson, Science 237, 1196 (1987).

    ADS  Google Scholar 

  28. N. N. Bogolyubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Akad. Nauk SSSR, Moscow, 1958; Consultants Bureau, New York, 1959).

    Google Scholar 

  29. W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  30. V. I. Belyavsky and Yu. V. Kopaev, Phys. Rev. B 67, 024513 (2003).

    Google Scholar 

  31. V. I. Belyavsky and Yu. V. Kopaev, Phys. Lett. A 322, 244 (2004).

    Article  ADS  Google Scholar 

  32. V. I. Belyavsky, Yu. V. Kopaev, and Yu. N. Togushova, Phys. Lett. A 338, 69 (2005).

    Article  ADS  Google Scholar 

  33. Y. Ren, J.-H. Xu, and C. S. Ting, Phys. Rev. Lett. 74, 3680 (1995).

    Article  ADS  Google Scholar 

  34. A. Ghosh and S. K. Adhikari, Phys. Rev. B 60, 10401 (1999).

    Google Scholar 

  35. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 5: Statistical Physics, 2nd ed. (Nauka, Moscow, 2001; Pergamon, New York, 1980), Part 2.

    Google Scholar 

  36. V. N. Muthukumar and Z. Y. Weng, Phys. Rev. B 65, 174511 (2002).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 4th ed. (Nauka, Moscow, 1995; Butterworth, London, 1999), Part 1.

    Google Scholar 

  38. M. Franz, Z. Tešanović, and O. Vafek, Phys. Rev. B 66, 054535 (2002).

    Google Scholar 

  39. Z. A. Xu, N. P. Ong, Y. Wang, et al., Nature 406, 486 (2000).

    ADS  Google Scholar 

  40. G. E. Volovik and L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 88, 1412 (1985) [Sov. Phys. JETP 61, 843 (1985)].

    ADS  Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1984).

    Google Scholar 

  42. Y. Wang, L. Li, M. J. Naughton, et al., cond-mat/0503190.

  43. M. Oda, T. Matsuzaki, N. Momono, and M. Ido, Physica C (Amsterdam) 341–348, 847 (2000).

    Google Scholar 

  44. G. Zheng, P. L. Kuhns, A. P. Reyes, et al., cond-mat/0502117.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 3, 2005, pp. 525–543.

Original Russian Text Copyright © 2005 by Belyavsky, Kopaev, Smirnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyavsky, V.I., Kopaev, Y.V. & Smirnov, M.Y. Tetracritical point and staggered vortex currents in superconducting state. J. Exp. Theor. Phys. 101, 452–467 (2005). https://doi.org/10.1134/1.2103213

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2103213

Keywords

Navigation