Advertisement

Technical Physics Letters

, Volume 31, Issue 9, pp 722–724 | Cite as

Transverse magnetoconductivity in a semiconductor superlattice under the stark quantization conditions

  • D. V. Zav’yalov
  • S. V. Kryuchkov
  • E. I. Kukhar’
Article
  • 38 Downloads

Abstract

The transverse magnetoconductivity has been calculated for a one-dimensional semiconductor superlattice under the action of an external quantizing electric field. The dependence of the conductivity on the electric and magnetic fields is analyzed and found to exhibit a strongly pronounced resonance character. The maximum values of conductivity are evaluated.

Keywords

Magnetic Field Quantization Condition Resonance Character Semiconductor Superlattice Pronounced Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wannier, Phys. Rev. 125, 1910 (1962).CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    J. Leo and A. MacKinnon, J. Phys.: Condens. Matter 1, 1449 (1989).CrossRefADSGoogle Scholar
  3. 3.
    K. Fujiwara, H. Schneider, R. Cingolani, and K. Ploog, Solid State Commun. 72, 935 (1989).Google Scholar
  4. 4.
    V. V. Bryxin and Yu. A. Firson, in Proceedings of the 10th International Conference on the Physics of Semiconductors, Boston, 1970, pp. 767–771.Google Scholar
  5. 5.
    V. V. Bryksin and Yu. A. Firsov, Fiz. Tverd. Tela (Leningrad) 13, 3246 (1971) [Sov. Phys. Solid State 13, 2729 (1971)].Google Scholar
  6. 6.
    I. B. Levinson and Ya. Yasevichyute, Zh. Éksp. Teor. Fiz. 62, 1902 (1972) [Sov. Phys. JETP 35, 991 (1972)].Google Scholar
  7. 7.
    Yu. A. Firsov, Polarons (Nauka, Moscow, 1975) [in Russian].Google Scholar
  8. 8.
    V. N. Bogomolov and T. N. Pavlova, in Multilayer Semiconductor Structures and Superlattices (IPF AN SSSR, Nizhni Novgorod, 1984), pp. 53–62.Google Scholar
  9. 9.
    D. N. Mirlin, V. F. Sapega, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 598 (2004) [Semiconductors 38, 576 (2004)].Google Scholar
  10. 10.
    V. I. Sankin and A. V. Naumov, Pis’ma Zh. Tekh. Fiz. 16(7), 91 (1990) [Sov. Tech. Phys. Lett. 16, 281 (1990)].Google Scholar
  11. 11.
    S. A. Ktitorov, G. S. Simin, and V. Ya. Sindalovskii, Fiz. Tverd. Tela (Leningrad) 18, 1140 (1976) [Sov. Phys. Solid State 18, 654 (1976)].Google Scholar
  12. 12.
    R. A. Suris, in Future Trends in Microelectronics: Reflections on the Road to Nanotechnology, Ed. by S. Luryi, J. Xu, and A. Zaslavsky (Kluwer Academic, Dordrecht, 1996), pp. 197–208.Google Scholar
  13. 13.
    F. G. Bass, V. V. Zorchenko, and V. I. Shashora, Pis’ma Zh. Éksp. Teor. Fiz. 31, 345 (1980) [JETP Lett. 31, 314 (1980)].Google Scholar
  14. 14.
    E. Adams and T. Holdstein, in A Collection of Scientific Works: Quantum Theory of Irreversible Processes (Inostrannaya Literatura, Moscow, 1961) [in Russian].Google Scholar
  15. 15.
    P. S. Zyryanov and M. I. Klinger, Quantum Theory of Electron Transport Phenomena in Crystalline Semiconductor (Nauka, Moscow, 1976) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • D. V. Zav’yalov
    • 1
  • S. V. Kryuchkov
    • 1
  • E. I. Kukhar’
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations