Skip to main content
Log in

Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency

  • Quantum Optics and Informatics with Single Atoms and Atomic Ensembles
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We consider the influence of the control and probe beams in the electromagnetically induced transparency configuration on the mechanical motion of ultracold atomic gases (atomic Bose-Einstein condensates or degenerate Fermi gases). We carry out a microscopic analysis of the interplay between radiation and matter and show that the two beams of light can provide an effective magnetic field acting on electrically neutral atoms in the case where the probe beam has an orbital angular momentum. As an example, we demonstrate how a Meissner-like effect can be created in an atomic Bose-Einstein condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003).

    Google Scholar 

  2. U. Leonhardt, T. Kiss, and P. Öhberg, Phys. Rev. A 67, 033602 (2003).

    Google Scholar 

  3. B. DeMarco and D. Jin, Science 285, 1703 (1999).

    Article  Google Scholar 

  4. Z. Hadzibabic, S. Gupta, C. Stan, et al., Phys. Rev. Lett. 91, 160 401 (2003).

  5. D. Tilley and J. Tilley, Superfluidity and Superconductivity (Inst. of Physics, Bristol, 1990).

    Google Scholar 

  6. G. Juzeliunas and P. Öhberg, Phys. Rev. Lett. 93, 033602 (2004).

    Google Scholar 

  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. Behrooz, Nature 397, 594 (1999).

    Article  ADS  Google Scholar 

  8. M. Kash, V. A. Sautenkov, A. S. Zibrov, et al., Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  9. D. Budker, D. Kimball, S. Rochester, and V. Yashuk, Phys. Rev. Lett. 83, 1767 (1999).

    Article  ADS  Google Scholar 

  10. U. Leonhardt and P. Piwnicki, Phys. Rev. Lett. 84, 822 (2000).

    Article  ADS  Google Scholar 

  11. M. Artoni and I. Carusotto, Phys. Rev. A 67, 011602 (2003).

    Google Scholar 

  12. G. Juzeliunas, M. Maíalas, and M. Fleischhauer, Phys. Rev. A 67, 023809 (2003).

    Google Scholar 

  13. M. Fleischhauer and M. Lukin, Phys. Rev. Lett. 84, 5094 (2000).

    ADS  Google Scholar 

  14. C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, Nature 409, 490 (2001).

    Article  ADS  Google Scholar 

  15. D. Phillips, A. Fleischhauer, A. Mair, et al., Phys. Rev. Lett. 86, 783 (2001).

    Article  ADS  Google Scholar 

  16. L. Allen, M. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).

    MathSciNet  Google Scholar 

  17. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Inst. of Physics, Bristol, 2003).

    Google Scholar 

  18. E. Arimondo, Prog. Opt. 35, 259 (1996).

    Google Scholar 

  19. S. Harris, Phys. Today 50, 36 (1997).

    Google Scholar 

  20. A. B. Matsko, O. Kocharovskaja, Y. Rostovtsev, et al., Adv. At., Mol., Opt. Phys. 46, 191 (2001).

    Google Scholar 

  21. M. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    Article  ADS  Google Scholar 

  22. D. Butts and D. Rokshar, Phys. Rev. A 55, 4346 (1997).

    Article  ADS  Google Scholar 

  23. M.-O. Mewes, D. Ferrari, F. Schreck, et al., Phys. Rev. A 61, 011403 (2000).

  24. G. Juzeliunas and M. Masalas, Phys. Rev. A 63, 061602 (2001).

    Google Scholar 

  25. M. Babiker, C. Bennett, D. Andrews, and L. D. Romero, Phys. Rev. Lett. 89, 143601 (2002).

    Google Scholar 

  26. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, Phys. Rev. A 63, 063602 (2001).

    Google Scholar 

  27. E. M. Wright, J. Arlt, and K. Dholakia, Phys. Rev. A 63, 013608 (2001).

    Google Scholar 

  28. J. Leach, E. Yao, and M. Padgett, New J. Phys. 6, 71 (2004).

    Article  ADS  Google Scholar 

  29. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  30. Y. Shin, M. Saba, M. Vengalattore, et al., cond-mat/0407045 (2004).

  31. C. Garvie, E. Riis, and A. S. Arnold, Laser Spectroscopy XVIP, Ed. by Hannaford et al. (World Scientifc, Singapore, 2004).

    Google Scholar 

  32. C. Regal, M. Greiner, and D. Jin, Phys. Rev. Lett. 92, 040 403 (2004).

  33. D. McGloin, G. Spalding, H. Melville, et al., Opt. Express 11, 158 (2003).

    ADS  Google Scholar 

  34. P. Öhberg, Phys. Rev. A 66, 021603 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Optika i Spektroskopiya, Vol. 99, No. 3, 2005, pp. 375–379.

Original English Text Copyright © 2005 by Juzeliunas, Öhberg.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juzeliunas, G., Öhberg, P. Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency. Opt. Spectrosc. 99, 357–361 (2005). https://doi.org/10.1134/1.2055927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2055927

Keywords

Navigation