Skip to main content
Log in

Relaxation of the energy of the protein colloidal solution arising at drying in open and closed systems

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Experiments show that drying of the same protein colloidal solution in open (air) and closed systems results in two thermodynamically nonequilibrium processes differing in character of energy relaxation. It has been shown that fast removal of the water (evaporation in this case) from the protein-water system is crucial for the protein to stay in the nonequilibrium state. To a certain extent, this fact can be considered as a simplified experimental equivalent of fast adenosine triphosphoric acid (ATF) hydrolysis, a reaction common to living organisms, since fast removal of the water from the water-protein system is also typical of this reaction. This analogy, as well as the similarity (in appearance and types and scales of symmetry) of the protein structures resulting upon drying the protein colloidal solution in vitro and in vivo, suggests that the relaxation processes taking place at nonequilibrium protein self-organization are similar in thermodynamic parameters in both cases. Thus, there appears the possibility of studying the protein in both the equilibrium and nonequilibrium (as yet poorly understood) state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. M. Alberts, D. Bray, J. Lewis, et al., Molecular Biology of the Cell (Garland, New York, 1989; Mir, Moscow, 1994).

    Google Scholar 

  2. E. D. P. De Robertis, W. W. Nowinski, and F. A. Saez, Cell Biology, 5th ed. (Saunders, Philadelphia, 1970; Mir, Moscow, 1973).

    Google Scholar 

  3. B. M. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell (Garland, New York, 1983; Mir, Moscow, 1994), Chap. 5.

    Google Scholar 

  4. B. M. Alberts, D. Bray, J. Lewis, et al., Molecular Biology of the Cell (Garland, New York, 1994; Mir, Moscow, 1994).

    Google Scholar 

  5. K. Kimura et al., Science 282, 487 (1998).

    Article  ADS  Google Scholar 

  6. D. Evans et al., Nature 394, 23 (1998).

    ADS  Google Scholar 

  7. M. B. Yaffe et al., Science 278, 1957 (1997).

    Article  ADS  Google Scholar 

  8. I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New Dialogue with Nature (Heinemann, London, 1984; Progress, Moscow, 1986).

    Google Scholar 

  9. A. Winfree, The Geometry of Biological Time (Springer, Berlin, 1980).

    Google Scholar 

  10. D. Avnir et al., Chem. Phys. Lett. 135, 177 (1987).

    Article  ADS  Google Scholar 

  11. E. Rapis, Pis’ma Zh. Tekh. Fiz. 14, 1561 (1988) [Sov. Tech. Phys. Lett. 14, 679 (1988)].

    Google Scholar 

  12. E. Rapis, Pis’ma Zh. Tekh. Fiz. 21(5), 13 (1995) [Tech. Phys. Lett. 21, 321 (1995)].

    Google Scholar 

  13. E. Rapis, Pis’ma Zh. Tekh. Fiz. 23(4), 28 (1997) [Tech. Phys. Lett. 23, 263 (1997)].

    Google Scholar 

  14. E. Rapis, Zh. Tekh. Fiz. 70(1), 122 (2000) [Tech. Phys. 45, 121 (2000)].

    Google Scholar 

  15. E. Rapis, Zh. Tekh. Fiz. 71(10), 104 (2001) [Tech. Phys. 46, 1307 (2001)].

    Google Scholar 

  16. E. Rapis, Protein and Life: Self-Assembling and Symmetry of Protein Nanostructures (MiltaPKPTIT, Moscow, 2003; Filobiblon, Yerusalem, 2003), p. 257.

    Google Scholar 

  17. J. M. Lehn, Proc. Natl. Acad. Sci. USA 99, 4763 (2002).

    Article  Google Scholar 

  18. T. Nishizaka et al., Nature 377, 251 (1995).

    Article  ADS  Google Scholar 

  19. J. Dobbie et al., Nature 396, 383 (1998).

    ADS  Google Scholar 

  20. J. Howard and A. Hyman, Nature 422, 753 (2003).

    Article  ADS  Google Scholar 

  21. Th. Pollard, Nature 422, 741 (2003).

    Article  ADS  Google Scholar 

  22. M. Schliwa and G. Wochlke, Nature 422, 759 (2003).

    Article  ADS  Google Scholar 

  23. A. Groisman and V. Stainberg, Nature 405, 53 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 75, No. 9, 2005, pp. 129–131.

Original Russian Text Copyright © 2005 by Rapis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapis, E. Relaxation of the energy of the protein colloidal solution arising at drying in open and closed systems. Tech. Phys. 50, 1236–1238 (2005). https://doi.org/10.1134/1.2051470

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2051470

Keywords

Navigation