Skip to main content
Log in

Electron-stimulated desorption of cesium atoms from cesium layers deposited on a germanium-coated tungsten surface

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The yield and energy distribution of Cs atoms from cesium layers adsorbed on germanium-coated tungsten were measured, using the time-of-flight technique with a surface-ionization-based detector, as a function of the energy of bombarding electrons, germanium film thickness, the amount of adsorbed cesium, and substrate temperature. The threshold for the appearance of Cs atoms is ∼30 eV, which correlates well with the germanium 3d-level ionization energy. As the electron energy increases, the Cs atom yield passes through a broad maximum at ∼120 eV. For germanium film thicknesses from 0.5 to 2 monolayers, resonance Cs yield peaks were observed at electron energies of 50 and 80 eV, which can be related to the tungsten 5p and 5s core-level ionization energies. As the cesium coverage increases, the Cs atom yield passes through a flat maximum at monolayer coverage. The energy distribution of Cs atoms follows a bell-shaped curve. With increasing cesium coverage, this curve shifts to higher energies for thin germanium films and to lower energies for thick films. The Cs energy distribution measured at a substrate temperature T = 160 K exhibits two bell-shaped peaks, namely, a narrow peak with a maximum at ∼0.35 eV, associated with tungsten core-level excitation, and a broad peak with a maximum at ∼0.5 eV, deriving from the excitation of the germanium 3d core level. The results obtained can be described within a model of Auger-stimulated desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Ramsier and J. T. Yates, Surf. Sci. Rep. 12, 247 (1991).

    Article  Google Scholar 

  2. V. N. Ageev, Progr. Surf. Sci. 47, 55 (1994).

    Article  Google Scholar 

  3. Physics and Chemistry of Alkali Metal Adsorption, Ed. by H. P. Bonzel, A. M. Bradshaw, and G. Ertl (Elsevier, Amsterdam, 1989).

    Google Scholar 

  4. É. Ya. Zandberg and N. I. Ionov, Surface Ionization (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  5. V. N. Ageev, Yu. A. Kuznetsov, and B. V. Yakshinskii, Fiz. Tverd. Tela (Leningrad) 24(2), 349 (1982) [Sov. Phys. Solid State 24 (2), 199 (1982)].

    Google Scholar 

  6. V. N. Ageev, O. P. Burmistrova, and Yu. A. Kuznetsov, Fiz. Tverd. Tela (Leningrad) 29(6), 1740 (1987) [Sov. Phys. Solid State 29 (6), 1000 (1987)].

    Google Scholar 

  7. V. N. Ageev, O. P. Burmistrova, and B. V. Yakshinskii, Surf. Sci. 194, 101 (1988).

    Article  Google Scholar 

  8. V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Fiz. Tverd. Tela (Leningrad) 33(6), 1834 (1991) [Sov. Phys. Solid State 33 (6), 1031 (1991)]; Fiz. Tverd. Tela (St. Petersburg) 35 (1), 156 (1993) [Phys. Solid State 35 (1), 82 (1993)].

    Google Scholar 

  9. V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Surf. Sci. 367, 113 (1996).

    Article  Google Scholar 

  10. V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Fiz. Tverd. Tela (St. Petersburg) 39(8), 1491 (1997) [Phys. Solid State 39 (8), 1324 (1997)]; V. N. Ageev and Yu. A. Kuznetsov, Fiz. Tverd. Tela (St. Petersburg) 39 (4), 758 (1997) [Phys. Solid State 39 (4), 671 (1997)].

    Google Scholar 

  11. V. N. Ageev, Yu. A. Kuznetsov, and T. E. Madey, Surf. Sci. 390, 146 (1997); Phys. Rev. B 58, 2248 (1998).

    Article  Google Scholar 

  12. V. N. Ageev and Yu. A. Kuznetsov, Fiz. Tverd. Tela (St. Petersburg) 42(4), 759 (2000) [Phys. Solid State 42 (4), 780 (2000)].

    Google Scholar 

  13. V. N. Ageev, O. P. Burmistrova, and B. V. Yakshinskii, Surf. Sci. 230, 295 (1990).

    Article  Google Scholar 

  14. É. F. Chaikovskii, G. M. Pyatigorskii, and D. F. Derkach, Izv. Akad. Nauk SSSR, Ser. Fiz. 38(2), 376 (1974).

    Google Scholar 

  15. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. Seah (Wiley, New York, 1983; Mir, Moscow, 1987), p. 567.

    Google Scholar 

  16. R. E. Weber and W. T. Peria, Surf. Sci. 14, 13 (1969).

    Google Scholar 

  17. L. Surnev and M. Tichov, Surf. Sci. 85, 413 (1979).

    Article  Google Scholar 

  18. V. N. Ageev, O. P. Burmistrova, and Yu. A. Kuznetsov, Poverkhnost 7, 28 (1988).

    Google Scholar 

  19. E. Wimmer, A. J. Freeman, J. R. Hiskes, and A. M. Karo, Phys. Rev. B 28, 3074 (1983).

    Article  ADS  Google Scholar 

  20. H. Ishida and K. Terakura, Phys. Rev. B 40, 11519 (1989).

  21. G. K. Wertheim, D. M. Riffe, and P. H. Citrin, Phys. Rev. B 49, 4834 (1994).

    ADS  Google Scholar 

  22. V. N. Ageev, Yu. A. Kuznetsov, and T. E. Madey, Surf. Sci. 451, 153 (2000).

    Google Scholar 

  23. V. N. Ageev, Yu. A. Kuznetsov, and T. E. Madey, Surf. Sci. 528, 47 (2003).

    Article  Google Scholar 

  24. V. N. Ageev and Yu. A. Kuznetsov, Pis’ma Zh. Tekh. Fiz. 29(24), 1 (2003) [Tech. Phys. Lett. 29 (12), 1011 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 9, 2005, pp. 1715–1721.

Original Russian Text Copyright © 2005 by Ageev, Kuznetsov, Potekhina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ageev, V.N., Kuznetsov, Y.A. & Potekhina, N.D. Electron-stimulated desorption of cesium atoms from cesium layers deposited on a germanium-coated tungsten surface. Phys. Solid State 47, 1784–1790 (2005). https://doi.org/10.1134/1.2045368

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045368

Keywords

Navigation