Skip to main content
Log in

Mechanism of formation of the equilibrium domain structure in crystals undergoing thermoelastic phase transitions

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The mechanism of formation of the equilibrium domain structure during a thermoelastic phase transition is proposed. This mechanism is related to long-range elastic strain fields created by “elastic charges” at the free crystal surface. It is assumed that, during a phase transition, there appears not only the nonzero primary (antiferromagnetic, martensitic) order parameter in the crystal but also an internal (quasi-plastic) stress rigidly related to the order parameter. The orientation of this stress with respect to the crystallographic axes can be changed by external fields. Elastic charges arise due to those components of the internal stress tensor whose flux across the crystal surface is nonzero. The nonlocal destressing energy is found. It is shown that, for a certain shape of a sample, an inhomogeneous distribution of the primary order parameter (a domain structure) is energetically more favorable. The characteristic field at which a sample becomes a single domain is shown to be dependent on the shape of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yamada, J. Phys. Soc. Jpn. 21(4), 650 (1966).

    Google Scholar 

  2. M. Safa and B. K. Tanner, Philos. Mag. B 37(6), 739 (1978).

    Google Scholar 

  3. G. F. Clark and B. K. Tanner, Phys. Status Solidi A 59(1), 241 (1980).

    Google Scholar 

  4. T. Hatanaka and A. Sawada, Jpn. J. Appl. Phys., Part 2 28(3), L794 (1989).

    Google Scholar 

  5. K. Ullakko, J. K. Huang, C. Kantner, R. C. O. Handley, and V. V. Kokorin, Appl. Phys. Lett. 69(13), 1966 (1996).

    Article  ADS  Google Scholar 

  6. E. V. Amitin, A. G. Baikalov, A. G. Blinov, L. A. Boyarskii, V. Ya. Dikovskii, K. R. Zhdanov, M. Yu. Kamenev, L. P. Kozeeva, and L. P. Sheklovnikov, Pis’ma Zh. Éksp. Teor. Fiz. 70(5), 350 (1999) [JETP Lett. 70 (5), 352 (1999)].

    Google Scholar 

  7. A. N. Lavrov, Y. Ando, K. Segawa, and J. Takeya, Phys. Rev. Lett. 83(7), 1419 (1999).

    Article  ADS  Google Scholar 

  8. V. M. Kalita, A. F. Lozenko, and S. M. Ryabchenko, Fiz. Nizk. Temp. 26(7), 671 (2000) [Low Temp. Phys. 26 (7), 489 (2000)].

    Google Scholar 

  9. A. N. Lavrov, S. Komiya, and Y. Ando, Nature 418, 385 (2002).

    Article  ADS  Google Scholar 

  10. N. B. Weber, H. Ohldag, H. Gomonaj, and F. U. Hillebrecht, Phys. Rev. Lett. 91(23), 237205 (2003).

    Google Scholar 

  11. Y. Y. Li, Phys. Rev. 101(5), 1450 (1956).

    Article  ADS  Google Scholar 

  12. D. S. Lieberman, M. S. Wechsler, and T. A. Read, J. Appl. Phys. 26(4), 473 (1955).

    Article  Google Scholar 

  13. B. Horovitz, G. R. Barsch, and J. A. Krumhansl, Phys. Rev. B 43(1), 1021 (1991).

    Article  ADS  Google Scholar 

  14. A. L. Roytburd, J. Appl. Phys. 83(1), 228 (1998).

    ADS  Google Scholar 

  15. M. Kléman and M. Schlenker, J. Appl. Phys. 43(7), 3184 (1972).

    Google Scholar 

  16. M. Kléman, J. Appl. Phys. 45(3), 1377 (1974).

    Google Scholar 

  17. E. Gomonay and V. M. Loktev, Phys. Rev. B 64(6), 064406 (2001).

  18. E. Gomonay and V. M. Loktev, J. Phys.: Condens. Matter. 14(15), 3959 (2002).

    Article  ADS  Google Scholar 

  19. M. Kléman, in Dislocations in Solids, Ed. by F. R. Nabarro (NH, Amsterdam, 1980), Vol. 7, Chap. 24, p. 351.

    Google Scholar 

  20. C. Teodosiu, Elastic Models of Crystal Defects (Springer, Berlin, 1982; Mir, Moscow, 1985).

    Google Scholar 

  21. R. de Wit, Int. J. Eng. Sci. 19(12), 1475 (1981).

    MATH  Google Scholar 

  22. A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  23. Ch. Kittel, Rev. Mod. Phys. 21(3), 541 (1949).

    ADS  Google Scholar 

  24. V. G. Bar’yakhtar, B. A. Ivanov, and M. V. Chetkin, Usp. Fiz. Nauk 146(3), 417 (1985) [Sov. Phys. Usp. 28 (3), 563 (1985)].

    Google Scholar 

  25. Y. Ando, A. N. Lavrov, and S. Komiya, Phys. Rev. Lett. 90(24), 247003 (2003).

    Google Scholar 

  26. V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, and T. M. Yatkevich, Fiz. Nizk. Temp. 30(1), 38 (2004) [Low Temp. Phys. 30 (1), 27 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 9, 2005, pp. 1689–1694.

Original Russian Text Copyright © 2005 by Gomonay, Loktev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomonay, E.V., Loktev, V.M. Mechanism of formation of the equilibrium domain structure in crystals undergoing thermoelastic phase transitions. Phys. Solid State 47, 1755–1760 (2005). https://doi.org/10.1134/1.2045363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045363

Keywords

Navigation