Skip to main content
Log in

On the role of vacancies in pore formation in the course of anodizing of silicon carbide

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Experimental data on the preparation of stoichiometric nanoporous silicon carbide are analyzed. Theoretical calculations are performed under the assumption that nanopores are formed through the vacancy diffusion mechanism. The results obtained confirm the hypothesis that the formation of pores with a steadystate radius of several tens of nanometers in silicon carbide can be associated with the diffusion and clustering of vacancies. The experimental data indicating that the proposed mechanism of formation of nanoporous silicon carbide correlates with the existing model of formation of porous silicon carbide with a fiber structure are discussed. This correlation can be revealed by assuming that nanopores are formed at the first stage with subsequent transformation of the nanoporous structure into a fiber structure due to the dissolution of the material in an electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Konstantinov, C. I. Harris, and E. Janzen, Appl. Phys. Lett. 65(21), 2699 (1994).

    Article  ADS  Google Scholar 

  2. J. van de Lagemaat, M. Plakman, D. Vanmaekelbergh, and J. J. Kelly, Appl. Phys. Lett. 69(15), 2246 (1996).

    ADS  Google Scholar 

  3. S. Zangooie, P. O. A. Persson, J. N. Hilfiker, L. Hultman, and H. J. Arwin, J. Appl. Phys. 87(12), 8497 (2000).

    Article  ADS  Google Scholar 

  4. M. Mynbaeva, Mater. Res. Soc. Symp. Proc. 742, 303 (2003).

    Google Scholar 

  5. S. Bai, Yue Ke, Y. Shishkin, O. Shigiltchoff, R. P. Devaty, W. J. Choyke, D. Strauch, B. Stojetz, B. Dorner, D. Hobgood, J. Serrano, M. Cardona, H. Nagasawa, T. Kimoto, and L. M. Porter, Mater. Res. Soc. Symp. Proc. 742, 151 (2003).

    Google Scholar 

  6. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, Mater. Sci. Eng., R 39(4), 93 (2002).

    Article  Google Scholar 

  7. S.-F. Chuang, S. D. Collins, and R. L. Smith, Appl. Phys. Lett. 55(15), 1540 (1989).

    Article  ADS  Google Scholar 

  8. S. E. Saddow, M. Mynbaeva, and M. MacMillan, in Silicon Carbide: Materials, Devices, and Applications, Ed. by Z. Feng and J. Zhao (Taylor and Francis, New York, 2003), Vol. 20, Chap. 8, pp. 321–385.

    Google Scholar 

  9. S. E. Saddov, M. Mynbaeva, M. C. D. Smith, A. N. Smirnov, and V. Dmitriev, Appl. Surf. Sci. 184(1–4), 72 (2001).

    Google Scholar 

  10. J. Bai, G. Dhanaraj, P. Gouma, M. Dudley, and M. Mynbaeva, Mater. Sci. Forum 457–460, 1479 (2004).

    Google Scholar 

  11. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in Solids (Énergoizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  12. M. Christophersen, S. Langa, J. Carstensen, I. M. Tiginyanu, and H. Föll, Phys. Status Solidi A 197(1), 197 (2003).

    ADS  Google Scholar 

  13. H. Föll, J. Carstensen, M. Christophersen, S. Langa, and I. M. Tiginyanu, Phys. Status Solidi A 197(1), 61 (2003).

    ADS  Google Scholar 

  14. J.-N. Chazalviel, R. B. Wehrspohn, and F. Ozanam, Mater. Sci. Eng., B 69–70(1), 1 (2000).

    Google Scholar 

  15. M. E. Kompan, Fiz. Tverd. Tela (St. Petersburg) 45(5), 902 (2003) [Phys. Solid State 45 (5), 948 (dy2003)].

    Google Scholar 

  16. V. P. Bondarenko, A. M. Dorofeev, and L. V. Tabulina, Poverkhnost, No. 10, 64 (1985).

  17. J. W. Corbett, D. I. Shereshevskii, and I. V. Verner, Phys. Status Solidi A 147(1), 81 (1995).

    Google Scholar 

  18. I. G. Margvelashvili and Z. K. Saralidze, Poverkhnost, No. 8, 107 (1988).

  19. B. E. Gatewood, Thermal Stresses (McGraw-Hill, New York, 1957).

    Google Scholar 

  20. Problems of Heat Transfer, Ed. by P. L. Kirillov (Atomizdat, Moscow, 1967) [in Russian].

    Google Scholar 

  21. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe, Ed. by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (John Wiley and Sons, New York, 2001), p. 95.

    Google Scholar 

  22. S. A. Kukushkin, Usp. Mekh. 2(2), 21 (2003).

    MathSciNet  Google Scholar 

  23. J. P. Stark, Phys. Rev. B 21(2), 556 (1980).

    Article  ADS  Google Scholar 

  24. A. I. Girka and E. N. Mokhov, Fiz. Tverd. Tela (St. Petersburg) 37(11), 3374 (1995) [Phys. Solid State 37 (11), 1855 (1995)].

    Google Scholar 

  25. E. N. Mokhov, Yu. A. Vodakov, and G. A. Lomakina, in Problems of Physics and Technology of Wide-Band-Gap Semiconductors (Leningrad Institute of Nuclear Physics, Leningrad, 1980), p. 136 [in Russian].

    Google Scholar 

  26. K. Sangval, Etching of Crystals (North-Holland, Amsterdam, 1987; Mir, Moscow, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 9, 2005, pp. 1571–1577.

Original Russian Text Copyright © 2005 by Mynbaeva, Bauman, Mynbaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mynbaeva, M.G., Bauman, D.A. & Mynbaev, K.D. On the role of vacancies in pore formation in the course of anodizing of silicon carbide. Phys. Solid State 47, 1630–1636 (2005). https://doi.org/10.1134/1.2045345

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045345

Keywords

Navigation