Skip to main content
Log in

Evolution of the structure and properties of the MgB2 superconductor under isothermal annealing

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of comparatively weak actions on the structure of the two-gap BCS superconductor MgB2 was studied. The MgB2 samples studied differed in terms of the annealing time at 900°C. It was found that the lattice parameters, residual resistivity, and critical temperature depend only weakly on the annealing time, whereas the electrical resistivity decreases by a few times when the annealing time is increased from 2 to 10 h. It is assumed that the observed effects may be caused by the influence of Mg and B atom ordering in the MgB2 lattice on charge transfer over the two-dimensional B-B σ bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  2. P. C. Canfield and G. W. Crabtree, Phys. Today 56(3), 34 (2003).

    Google Scholar 

  3. C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001).

    Article  ADS  Google Scholar 

  4. V. M. Dmitriev, N. N. Prentslau, V. N. Baumer, N. N. Gal’tsov, L. A. Ishchenko, A. I. Prokhvatilov, M. A. Strzhemechnyi, A. V. Terekhov, A. I. Bykov, V. I. Lyashenko, Yu. B. Paderno, and V. N. Paderno, Fiz. Nizk. Temp. 30(4), 385 (2004) [Low Temp. Phys. 30 (4), 284 (2004)].

    Google Scholar 

  5. P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, and H. Fjellvåg, Phys. Rev. B 64, 224509 (2001).

    Google Scholar 

  6. I. I. Mazin, O. K. Andersen, O. Jepsen, O. V. Dolgov, J. Kortus, A. A. Golubov, A. B. Kuz’menko, and D. van der Marel, Phys. Rev. Lett. 89, 107002 (2002).

    Google Scholar 

  7. A. L. Ivanovskii, Fiz. Tverd. Tela (St. Petersburg) 45(10), 1742 (2003) [Phys. Solid State 45 (10), 1829 (2003)].

    Google Scholar 

  8. J. D. Jorgensen, D. G. Hinks, and S. Short, Phys. Rev. B 63, 224 522 (2001).

    Google Scholar 

  9. X. H. Chen, Y. S. Wang, Y. Y. Xue, R. L. Y. Q. Wang, and C. W. Chu, Phys. Rev. B 65, 024502 (2002).

    Google Scholar 

  10. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  11. Z. F. Wei, G. C. Che, F. M. Wang, W. C. Wang, M. He, and X. L. Chen, Mod. Phys. Lett. B 15(25), 1109 (2001).

    ADS  Google Scholar 

  12. C. Walti, E. Felder, C. Degen, G. Wigger, R. Monnier, B. Delley, and H. R. Ott, Phys. Rev. B 64, 172515 (2001).

    Google Scholar 

  13. R. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. Lett. 87, 047 001 (2001).

    Google Scholar 

  14. B. Lorenz, R. L. Meng, and C. W. Chu, Phys. Rev. B 64, 012507 (2001).

    Google Scholar 

  15. J. Kortus, I. I. Mazin, K. D. Belashcenko, V. P. Antopov, and L. L. Boyer, Phys. Rev. Lett. 86, 4656 (2001).

    ADS  Google Scholar 

  16. S. L. Bud’ko, G. Lepertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).

    ADS  Google Scholar 

  17. D. G. Hinks, H. Claus, and J. D. Jorgensen, Nature 411, 457 (2001).

    Article  ADS  Google Scholar 

  18. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Google Scholar 

  19. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Article  ADS  Google Scholar 

  20. I. M. Iavarone, G. Karapetov, A. E. Koshelev, W. K. Kwok, G. W. Crabtree, D. G. Hinks, W. N. Kang, Eun-Mi Choi, Hyun Jung Kim, Hyeong-Jin Kim, and S. I. Lee, Phys. Rev. Lett. 89, 187002 (2002).

    Google Scholar 

  21. K. Yanson and Yu. G. Naidyuk, Fiz. Nizk. Temp. 30(4), 355 (2004) [Low Temp. Phys. 30 (4), 261 (2004)].

    Google Scholar 

  22. A. M. Cucolo, F. Bobba, F. Giubileo, and D. Roditchev, Physica A 339(1–2), 112 (2004).

    ADS  Google Scholar 

  23. A. R. Sweedler and D. E. Cox, Phys. Rev. 12, 147 (1975).

    ADS  Google Scholar 

  24. Y. Y. Xue, R. L. Meng, B. Lorenz, J. K. Meen, Y. Y. Sun, and C. W. Chu, Physica C 377, 7 (2002).

    Article  ADS  Google Scholar 

  25. R. A. Ribeiro, S. L. Bud’ko, C. Petrovic, and P. C. Canfield, Physica C 385(1–2), 16 (2002).

    ADS  Google Scholar 

  26. M. Paranthaman, J. R. Thomson, and D. K. Christen, Physica C 355, 1 (2001).

    Article  ADS  Google Scholar 

  27. B. Lorenz, R. L. Meng, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 64, 052513 (2001).

    Google Scholar 

  28. E. Mezzetti, D. Botta, R. Cherubini, A. Chiodani, R. Gerbaldo, G. Chigo, G. Giunchi, L. Gozzelino, and B. Minetti, Physica C 372–376, 1277 (2002).

    Google Scholar 

  29. M. H. Badr and K.-W. Ng, Supercond. Sci. Technol. 16, 668 (2003).

    Article  ADS  Google Scholar 

  30. A. Serquis, X. Z. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang, J. O. Willis, D. E. Peterson, F. M. Mueller, N. O. Moreno, J. D. Thompson, V. F. Nesterenko, and S. S. Indrakanti, J. Appl. Phys. 92(1), 351 (2002).

    Article  ADS  Google Scholar 

  31. Y. Zhu, L. Wu, V. Volkov, Q. Li, G. Gu, A. R. Moodenbaugh, M. Malac, M. Suenaga, and J. Tranquada, Physica C 356, 239 (2001).

    Article  ADS  Google Scholar 

  32. X. Z. Liao, A. Serquis, Y. T. Zhu, D. E. Peterson, F. M. Mueller, and H. F. Xu, Supercond. Sci. Technol. 17, 1026 (2004).

    Article  ADS  Google Scholar 

  33. A. Gurevich, Braz. J. Phys. 33(4), 700 (2003).

    Article  Google Scholar 

  34. A. A. Blinkin, V. N. Golovin, V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel, J. Funct. Mater. 9(2), 239 (2002).

    Google Scholar 

  35. V. M. Arzhavitin, Yu. Yu. Razdovskii, and V. A. Finkel’, Sverkhprovodimost: Fiz., Khim., Tekh. 6, 1291 (1993).

    Google Scholar 

  36. S. Lee, T. Masui, H. Mori, Yu. Eltsev, A. Yamamoto, and S. Tajima, Supercond. Sci. Technol. 16, 213 (2003).

    ADS  Google Scholar 

  37. V. V. Toryanik, V. A. Finkel’, and V. V. Derevyanko, Fiz. Khim. Obrab. Mater., No. 5, 55 (1995).

  38. Yu. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, and M. Murakami, Phys. Rev. B 66, 180504(R) (2002).

  39. D. K. Fennimore, J. E. Ostenson, S. L. Bud ko, G. Lapertot, and P. C. Cornfield, Phys. Rev. Lett. 86, 2420 (2001).

    ADS  Google Scholar 

  40. J. M. Rowell, Supercond. Sci. Technol. 16(6), R17 (2003).

    Article  ADS  Google Scholar 

  41. N. Rogado, M. A. Hayward, K. A. Regan, Y. Wang, N. P. Ong, H. W. Zanbergen, J. M. Rowell, and R. J. Cava, J. Appl. Phys. 91, 974 (2002).

    Article  Google Scholar 

  42. P. A. Sharma, N. Hur, Y. Horibe, C. H. Chen, B. G. Kim, S. Guha, M. Z. Cieplak, and S.-W. Cheong, Phys. Rev. Lett. 89, 167003 (2002).

    Google Scholar 

  43. R. J. Cava, H. W. Zandbergen, and K. Inumaru, Physica C 385(1–2), 8 (2002).

    ADS  Google Scholar 

  44. V. A. Finkel’, Structure of Superconducting Compounds (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  45. Y. Wang, F. Bouquet, I. Shekin, P. Toulmonde, B. Revaz, M. Eisterer, H. W. W. Weber, J. Hinderer, and A. Junod, J. Phys.: Condens. Matter 15(6), 883 (2003).

    ADS  Google Scholar 

  46. K. A. Yates, G. Burnell, N. A. Stelmashenko, F.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, Phys. Rev. B 68, 220512(R) (2003).

  47. I. I. Mazin and V. P. Antropov, Physica C 385, 49 (2003).

    Article  ADS  Google Scholar 

  48. V. A. Drozd, A. M. Gabovich, P. Gierowski, M. Pikala, and H. Szymczak, Physica C 402(4), 325 (2004).

    Article  ADS  Google Scholar 

  49. A. B. Pippard, Proc. R. Soc. 203, 98 (1950).

    ADS  Google Scholar 

  50. M. Putti, V. Braccini, E. Galleani d’Agliano, F. Napoli, I. Pallechi, A. S. Siri, P. Manfrietti, and A. Palenzona, Supercond. Sci. Technol. 16, 188 (2003); Phys. Rev. B 67, 064505 (2003).

    Article  ADS  Google Scholar 

  51. M. Putti, E. Galleani d’Agliano, D. Marré, F. Napoli, M. Tassisto, P. Manfrietti, and A. Palenzona, Stud. High Temp. Supercond. 38, 303 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 9, 2005, pp. 1546–1551.

Original Russian Text Copyright © 2005 by Blinkin, Derevyanko, Golovin, Sukhareva, Finkel’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinkin, A.A., Derevyanko, V.V., Golovin, V.N. et al. Evolution of the structure and properties of the MgB2 superconductor under isothermal annealing. Phys. Solid State 47, 1605–1610 (2005). https://doi.org/10.1134/1.2045341

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045341

Keywords

Navigation