Skip to main content
Log in

Integrated characteristics of the radial magnetic field in solar active regions during quiet and flare-productive phases of their evolution

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

This paper presents a statistical study of various integrated parameters of solar active regions, such as the distance between the polarity centroids, the inclination of the magnetic axis, the flux imbalance between the polarities, and the interosculation parameter of the magnetic fluxes of opposite polarities. The study is based on observations of the longitudinal photospheric magnetic field. We analyze ten active regions for which an appreciable volume of data with good spatial resolution are available. The distributions of the above parameters with field strength are very different for quiet and flare-productive active regions and for quiet and flare-active evolutionary phases of the same active region. Some distributions exhibit substantial and characteristic variations during the development of certain flare processes. The first moments of the distributions reflect specific features in the configuration of the photospheric magnetic fields and are correlated with the level of eruptive processes in the active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tanaka and Y. Nakagawa, Sol. Phys. 33, 187 (1973).

    Article  ADS  Google Scholar 

  2. E. Tansberg-Hahsen and A. G. Emslie, The Physics of Solar Flares (Cambridge Univ. Press., Cambridge, 1988).

    Google Scholar 

  3. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).

    Google Scholar 

  4. T. R. Metcalf, J. Litao, A. N. McClymont, et al., Astrophys. J. 439, 474 (1995).

    Article  ADS  Google Scholar 

  5. C. Sawyer, J. W. Warwick, and J. T. Dennett, Solar Flare Prediction (Colorado Assoc. Univ. Press, Boulder, 1986).

    Google Scholar 

  6. P. S. McIntosh, Sol. Phys. 125, 251 (1990).

    Article  ADS  Google Scholar 

  7. B. Schmieder et al., Sol. Phys. 150, 199 (1994).

    ADS  Google Scholar 

  8. T. Wang, A. Xu, and H. Zhang, Sol. Phys. 155, 99 (1994).

    Article  ADS  Google Scholar 

  9. D. P. Choudhary, A. Ambastha, and G. Ai, Sol. Phys. 179, 133 (1998).

    Article  ADS  Google Scholar 

  10. N. Nitta, L. van Driel-Gesztelyi, K. D. Leka, and K. Shibata, Adv. Space Res. 17, 201 (1996).

    ADS  Google Scholar 

  11. V. S. Gorbachev, S. R. Kel’ner, B. V. Somov, and A. S. Shvarts, Astron. Zh. 65, 601 (1988) [Sov. Astron. 32, 308 (1988)].

    ADS  Google Scholar 

  12. T. Wang, Q. Jiong, and Z. Hongqi, Astron. Astrophys. 336, 359 (1998).

    ADS  Google Scholar 

  13. S. R. Patty and M. J. Hagyard, Sol. Phys. 103, 111 (1986).

    Article  ADS  Google Scholar 

  14. J. Wang, Z. Shi, H. Wang, and Y. Lü, Astrophys. J. 456, 861 (1996).

    ADS  Google Scholar 

  15. H. Li, T. Sakurai, K. Ichimoto, and S. Ueno, Publ. Astron. Soc. Jpn. 52, 465 (2000).

    ADS  Google Scholar 

  16. D. L. Mickey et al., Sol. Phys. 168, 229 (1996).

    Article  ADS  Google Scholar 

  17. B. J. LaBonte, D. L. Mickey, and K. D. Leka, Sol. Phys. 189, 1 (1999).

    Article  ADS  Google Scholar 

  18. J. Chen, H. Wang, H. Zirin, and G. Ai, Sol. Phys. 154, 261 (1994).

    Article  ADS  Google Scholar 

  19. M. J. Hagyard, J. B. J. Smith, D. Teuber, and E. A. West, Sol. Phys. 91, 115 (1984).

    Article  ADS  Google Scholar 

  20. A. Ambastha, M. J. Hagyard, and E. A. West, Sol. Phys. 148, 277 (1993).

    Article  ADS  Google Scholar 

  21. H. Wang, M. W. J. Ewell, H. Zirin, and G. Ai, Astrophys. J. 424, 436 (1994).

    Article  ADS  Google Scholar 

  22. O. V. Chumak et al., Astron. Astrophys. Trans. 22(3), 335 (2003).

    ADS  Google Scholar 

  23. G. Ai, Publ. Beijing Astron. Obs. 9, 27 (1987).

    Google Scholar 

  24. N. Nitta, Astrophys. J. 491, 402 (1997).

    Article  ADS  Google Scholar 

  25. O. V. Chumak and Z. N. Chumak, Kin. Fiz. Neb. Tel 3(3), 7 (1987).

    ADS  Google Scholar 

  26. O. V. Chumak, Tr. Astrofiz. Inst. Akad. Nauk Kaz. SSR 51, 65 (1992).

    Google Scholar 

  27. O. V. Chumak, É. V. Kononovich, and S. A. Krasotkin, Izv. Ross. Akad. Nauk, Ser. Fiz. 62, 1879 (1998).

    Google Scholar 

  28. O. V. Chumak and H. Zhang, in Solar Variability as an Input to the Earth’s Environment, Ed. by A. Wilson (ESA Publ. Division, Noordwijk, 2003), ESA SP-535, p. 75.

    Google Scholar 

  29. H. Wang, Sol. Phys. 215, 281 (2003).

    ADS  Google Scholar 

  30. O. V. Chumak and H. Zhang, Chin. J. Astron. Astrophys. 3(2), 175 (2003).

    ADS  Google Scholar 

  31. Solar Geophysical Data. Explanation of Data Reports, No. 515 (Suppl.), 21 (1987).

  32. L. M. Green, P. Démoulin, C. H. Mandrini, and L. Van Driel-Gesztelyi, Sol. Phys. 215, 307 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 9, 2005, pp. 847–859.

Original Russian Text Copyright © 2005 by Chumak, Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chumak, O.V., Zhang, H.Q. Integrated characteristics of the radial magnetic field in solar active regions during quiet and flare-productive phases of their evolution. Astron. Rep. 49, 755–766 (2005). https://doi.org/10.1134/1.2045326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045326

Keywords

Navigation