Skip to main content
Log in

The possible nature of dips in the light curves of semidetached binaries with stationary disks

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A thickening at the outer edge of the accretion disk is usually invoked to explain the dips in the light curves of cataclysmic variables with stationary disks at phases ∼0.7. The noncollisional interaction between the stream and the disk in the stationary solution raises the question of why matter appears at a considerable height above the accretion disk in such systems. Our three-dimensional numerical modeling demonstrates that a thickening of the halo above the disk can appear even in the absence of a direct collision between the stream and the disk. In the gas-dynamical flow pattern described with the “hot-line” model, a considerable fraction of the matter is accelerated in the vertical direction during the flow’s interaction with the circumdisk halo. The vertical motion of the gas due to the presence of the z component of the velocity leads to a gradual thickening of the circumdisk halo. The computations reveal the strongest thickening of the halo above the outer edge of the disk at phases ∼0.7, in agreement with observations for stationary-disk cataclysmic variables. This supports the hot-line model suggested earlier as a description of the pattern of the matter flows in semidetached binaries and presents new possibilities for interpreting the light curves of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. White and S. S. Holt, Astrophys. J. 257, 318 (1982).

    Article  ADS  Google Scholar 

  2. K. O. Mason, in Two Topics in X-ray Astronomy, Vol. 1: X-ray Binaries (1989), ESA SP-296, p. 113.

  3. M. Livio, N. Soker, and R. Dgani, Astrophys. J. 305, 267 (1986).

    Article  ADS  Google Scholar 

  4. R. Dgani, M. Livio, and N. Soker, Astrophys. J. 336, 350 (1989).

    Article  ADS  Google Scholar 

  5. M. Hirose, Y. Osaki, and S. Mineshige, Publ. Astron. Soc. Jpn. 43, 809 (1991).

    ADS  Google Scholar 

  6. S. H. Lubow and F. H. Shu, Astrophys. J. Lett. 198, 383 (1975).

    Article  ADS  Google Scholar 

  7. S. H. Lubow and F. H. Shu, Astrophys. J. Lett. 207, L53 (1976).

    Article  ADS  Google Scholar 

  8. S. H. Lubow, Astrophys. J. 340, 1064 (1989).

    Article  ADS  Google Scholar 

  9. J. Frank, A. R. King, and J.-P. Lasota, Astron. Astrophys. 178, 137 (1987).

    ADS  Google Scholar 

  10. P. J. Armitage and M. Livio, Astrophys. J. 470, 1024 (1996).

    ADS  Google Scholar 

  11. K. O. Mason, F. A. Cordova, M. G. Watson, and A. R. King, Mon. Not. R. Astron. Soc. 232, 779 (1988).

    ADS  Google Scholar 

  12. K. S. Long, C. W. Mauche, J. C. Raymond, et al., Astrophys. J. 469, 841 (1996).

    Article  ADS  Google Scholar 

  13. T. Naylor, G. T. Bath, P. A. Charles, et al., Mon. Not. R. Astron. Soc. 231, 237 (1988).

    ADS  Google Scholar 

  14. I. Billington, T. R. Marsh, K. Horne, et al., Mon. Not. R. Astron. Soc. 279, 1274 (1996).

    ADS  Google Scholar 

  15. E. T. Harlaftis, B. J. M. Hassall, T. Naylor, et al., Mon. Not. R. Astron. Soc. 257, 607 (1992).

    ADS  Google Scholar 

  16. K. O. Mason, J. E. Drew, and C. Knigge, Mon. Not. R. Astron. Soc. 290, L23 (1997).

    ADS  Google Scholar 

  17. C. S. Froning, K. S. Long, and C. Knigge, Astrophys. J. 584, 433 (2003).

    Article  ADS  Google Scholar 

  18. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, and V. M. Chechetkin, Astron. Zh. 74, 880 (1997) [Astron. Rep. 41, 786 (1997)].

    Google Scholar 

  19. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, et al., Astron. Zh. 75, 40 (1998) [Astron. Rep. 42, 33 (1998)].

    Google Scholar 

  20. D. V. Bisikalo, A. A. Boyarchuk, V. M. Chechetkin, et al., Mon. Not. R. Astron. Soc. 300, 39 (1998).

    Article  ADS  Google Scholar 

  21. A. A. Boyarchuk, D. V. Bisikalo, O. A. Kuznetsov, and V. M. Chechetkin, Mass Transfer in Close Binary Stars (Taylor and Francis, London, 2002).

    Google Scholar 

  22. D. V. Bisikalo, A. A. Boyarchuk, P. V. Kaigorodov, and O. A. Kuznetsov, Astron. Zh. 80, 879 (2003) [Astron. Rep. 47, 809 (2003)].

    Google Scholar 

  23. M. Makita, K. Miyawaki, and T. Matsuda, Mon. Not. R. Astron. Soc. 316, 906 (2000).

    Article  ADS  Google Scholar 

  24. K. Sawada and T. Matsuda, Mon. Not. R. Astron. Soc. 255, 17P (1992).

    ADS  Google Scholar 

  25. P. L. Roe, Annu. Rev. Fluid Mech. 18, 337 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. S. R. Chakravarthy and S. Osher, in Proceedings of the 23rd Aerospace Sci. Meeting (1985), AIAA-85-0363, p. 363.

  27. O. A. Kuznetsov, D. V. Bisikalo, A. A. Boyarchuk, et al., Astron. Zh. 78, 997 (2001) [Astron. Rep. 45, 872 (2001)].

    Google Scholar 

  28. P. J. Groot, R. G. M. Rutten, and J. van Paradijs, Astron. Astrophys. 417, 283 (2004).

    Article  ADS  Google Scholar 

  29. K. R. Bell and D. N. C. Lin, Astrophys. J. 427, 987 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 9, 2005, pp. 788–796.

Original Russian Text Copyright © 2005 by Bisikalo, Kaigorodov, Boyarchuk, Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisikalo, D.V., Kaigorodov, P.V., Boyarchuk, A.A. et al. The possible nature of dips in the light curves of semidetached binaries with stationary disks. Astron. Rep. 49, 701–708 (2005). https://doi.org/10.1134/1.2045320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045320

Keywords

Navigation