Skip to main content
Log in

Acceleration of spatial motions of stars by close-binary supermassive black holes in galactic nuclei

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The conditions for the acceleration of the spatial motions of stars by close-binary supermassive black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative orbital velocities of the binary-SMBH components. In the stage when the binary components are merging due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most massive binary black-holes (M ≳ 109 M ) can also accelerate main-sequence stars with solar or subsolar masses to such velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tokovinin, Astron. Astrophys. 124, 75 (1997).

    ADS  Google Scholar 

  2. J. Hills, Astron. J. 80, 809 (1975).

    ADS  MathSciNet  Google Scholar 

  3. J. Hills, Astron. J. 102, 704 (1991).

    Article  ADS  Google Scholar 

  4. P. Hut, Astrophys. J. 268, 342 (1983).

    ADS  Google Scholar 

  5. P. Hut, Celest. Mech. 45, 713 (1989).

    Google Scholar 

  6. P. Hut, Astrophys. J. 403, 256 (1993).

    Article  ADS  Google Scholar 

  7. H. Baumgardt, P. Hut, and D. Heggie, Mon. Not. R. Astron. Soc. 336, 1069 (2002).

    Article  ADS  Google Scholar 

  8. A. Blaaw, Annu. Rev. Astron. Astrophys. 2, 213 (1964).

    ADS  Google Scholar 

  9. W. Brown, M. Geller, S. Kenyon, et al., astro-ph/0501177 (2005).

  10. R. Mendez, M. Guerrero, K. Freeman, et al., Astrophys. J. Lett. 491, L23 (1997).

    ADS  Google Scholar 

  11. T. Lauer, S. Faber, K. Gebhardt, et al., astro-ph/0412040 (2004).

  12. M. Mozi, ASP Conf. Ser. 222, 359 (2001).

    ADS  Google Scholar 

  13. I. Iben, Jr., A. Tutukov, and L. Yungelson, Astrophys. J., Suppl. Ser. 100, 233 (1995).

    ADS  Google Scholar 

  14. T. Bogdanovic, M. Eracleons, S. Mahadevan, et al., Astrophys. J. 610, 707 (2004).

    ADS  Google Scholar 

  15. D. Stern, P. van Dokkum, P. Nugent, et al., Astrophys. J. 612, 690 (2004).

    Article  ADS  Google Scholar 

  16. L. Li, R. Narayan, and K. Menou, Astrophys. J. 576, 753 (2002).

    ADS  Google Scholar 

  17. A. Renzini, Nature 378, 39 (1995).

    Article  ADS  Google Scholar 

  18. A. Komossa and N. Bade, Astron. Astrophys. 343, 775 (1999).

    ADS  Google Scholar 

  19. A. Komossa and J. Greiner, Astron. Astrophys. 349, L45 (1999).

    ADS  Google Scholar 

  20. Y. Levin, A. S. P. Wu, and E. W. Thommes, astro-ph/0502143 (2005).

  21. Q. Yu and S. Tremaine, Astrophys. J. 599, 1129 (2003).

    Article  ADS  Google Scholar 

  22. A. V. Tutukov, Astron. Zh. 82, 1 (2005) [Astron. Rep. 49, 13 (2005)].

    Google Scholar 

  23. S. Komossa, Am. Inst. Phys. Conf. Proc. 686, 161 (2003).

    ADS  Google Scholar 

  24. R. Rieger and K. Maunheim, Astron. Astrophys. 397, 121 (2003).

    Article  ADS  Google Scholar 

  25. A. Lobanov and J. Roland, astro-ph/0411417 (2004).

  26. J. Gerssen, Astron. J. 127, 75 (2004).

    Article  ADS  Google Scholar 

  27. F. Liu, X. Wu, and S. Cao, Mon. Not. R. Astron. Soc. 340, L411 (2003).

    Article  ADS  Google Scholar 

  28. M. Seigar, Mon. Not. R. Astron. Soc. 344, 110 (2003).

    Article  ADS  Google Scholar 

  29. H. Zhou, T. Wang, X. Zhang, et al., Astrophys. J. Lett. 604, L33 (2004).

    Article  ADS  Google Scholar 

  30. N. Morgan, G. Burley, E. Costa, et al., Astron. J. 119, 1083 (2000).

    Article  ADS  Google Scholar 

  31. G. Voit, astro-ph/0410173 (2004).

  32. T. Ho, Astrophys. J. 564, 120 (2002).

    Article  ADS  Google Scholar 

  33. W. de Vries, R. Becker, and R. White, Astron. J. 126, 1217 (2003).

    ADS  Google Scholar 

  34. R. B. Tully and J. R. Fisher, Astron. Astrophys. 54, 661 (1977).

    ADS  Google Scholar 

  35. M. Elvis, G. Risaliti, and G. Zamorani, Astrophys. J. Lett. 565, L75 (2002).

    Article  ADS  Google Scholar 

  36. C. Zier and P. L. Bierman, Astron. Astrophys. 377, 23 (2001).

    Article  ADS  Google Scholar 

  37. P. Guhathakurta, J. Ostheimer, K. Gilbert, et al., astro-ph/0502366 (2005).

  38. M. Davies and A. King, astro-ph/0503441 (2005).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 9, 2005, pp. 763–778.

Original Russian Text Copyright © 2005 by Tutukov, Fedorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutukov, A.V., Fedorova, A.V. Acceleration of spatial motions of stars by close-binary supermassive black holes in galactic nuclei. Astron. Rep. 49, 678–692 (2005). https://doi.org/10.1134/1.2045318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045318

Keywords

Navigation