Skip to main content
Log in

On the stability of the phase problem

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Phase retrieval of a signal given its intensity is considered as a problem of statistically estimating a set of unknown parameters, the Zernike coefficients. Specifically, the phase problem is presented in the context of classical wave optics in the Fresnel approximation. Investigating the stability in this case suggests first learning if the Zernike coefficients can be restored in principle. If this is indeed the case, it then suggests determining the accuracy of their estimation. The stability of a solution to the phase problem depends, as it does for the other inverse problems, on the spectrum of the Fisher information matrix. An explicit representation of the Fisher matrix is given, and its spectrum is calculated for in-focus and out-of-focus images of a pointlike source. Simulations show that the solutions in the latter case are generally stable, so the coefficients of the Zernike series can be determined with an acceptable accuracy. The principal components, the mutually independent combinations of aberrations that are a generalization of the coefficients of the well-known Karhunen-Loeve decomposition, are calculated. As an example of this approach, the maximum-likelihood method is used to determine the aberrations of the optical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985; Mir, Moscow, 1988).

    Google Scholar 

  2. G. I. Vasilenko and A. M. Taratorin, Image Restoration (Radio i Svyaz', Moscow, 1986).

    Google Scholar 

  3. A. V. Goncharskii, V. V. Popov, and V. V. Stepanov, An Introduction to Computer Optics (Mosk. Gos. Univ., Moscow, 1991).

    Google Scholar 

  4. P. A. Jansson, Deconvolution of Images and Spectra (Academic, San Diego, 1997).

    Google Scholar 

  5. C. van Schooneveld, Image Formation from Coherence Functions in Astronomy in Proceedings of IAU Colloquium (Dordrecht, Reidel, 1979; Mir, Moscow, 1982), No. 49.

    Google Scholar 

  6. A. A. Tokovinin, Stellar Interferometers (Nauka, Moscow, 1988).

    Google Scholar 

  7. C. J. Burrows, J. A. Holtzman, S. M. Faber, et al., Astrophys. J. Lett. 369, L21 (1991).

    Article  ADS  Google Scholar 

  8. A. G. Tescher, Proc. SPIE 1567 (1991).

  9. C. Roddier and F. Roddier, Appl. Opt. 32, 2992 (1993).

    ADS  Google Scholar 

  10. J. R. Fienup, J. C. Marron, T. J. Schulz, et al., Appl. Opt. 32, 1747 (1993).

    ADS  Google Scholar 

  11. R. J. Hanisch and R. L. White, Eds., The Restoration of HST Images and Spectra-II (NASA, 1994).

  12. R. G. Lyon, J. E. Dorband, and J. M. Hollis, Appl. Opt. 36, 1752 (1997).

    Article  ADS  Google Scholar 

  13. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

    Google Scholar 

  14. J. R. Fienup, Opt. Lett. 3, 27 (1978).

    ADS  Google Scholar 

  15. J. R. Fienup, Opt. Eng. 18, 529 (1979).

    ADS  Google Scholar 

  16. J. R. Fienup, Appl. Opt. 21, 2758 (1982).

    Article  ADS  Google Scholar 

  17. J. C. Dainty and J. R. Fienup, Image Recovery: Theory and Application, Ed. by H. Stark (Academic, New York, 1987), Chap. 7, p. 231.

    Google Scholar 

  18. V. Yu. Terebizh, Astron. Astrophys. Trans. 1, 3 (1991).

    ADS  Google Scholar 

  19. V. Yu. Terebizh, Usp. Fiz. Nauk 165, 143 (1995a).

    Google Scholar 

  20. V. Yu. Terebizh, Int. J. Imag. Syst. Technol. 6, 358 (1995b).

    Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

    Google Scholar 

  22. S. N. Bezdid'ko, Opt.-Mekh. Prom. 9, 58 (1974).

    Google Scholar 

  23. F. Zernike, Physica 1, 689 (1934).

    Article  MATH  ADS  Google Scholar 

  24. R. J. Noll, J. Opt. Soc. Amer. 66, 207 (1976).

    ADS  Google Scholar 

  25. V. A. Kotel'nikov, in Proceedings of All-Russia Conference on Technical Reconstruction of Communications and Weak-Current Industry (Moscow, 1933).

  26. C. Shannon, Bell Syst. Techn. J. 27, 379, 623 (1948).

    MathSciNet  MATH  Google Scholar 

  27. C. Shannon, Proc. IRE 37, 10 (1949).

    MathSciNet  Google Scholar 

  28. D. R. Cox, J. R. Statist. Soc. B17, 129 (1955).

    Google Scholar 

  29. L. Mandel, Proc. Phys. Soc. London 72, 1037 (1958).

    Google Scholar 

  30. L. Mandel, Proc. Phys. Soc. London 74, 233 (1959).

    Google Scholar 

  31. C. L. Mehta, Progress in Optics, Ed. by E. Wolf (North Holland, Amsterdam, 1970), Vol. 8, p. 373.

    Google Scholar 

  32. G. J. Troup, Progress in Quantum Electronics, Ed. by J. H. Sanders and S. Stenholm (Pergamon, Oxford, 1972), Vol. 2, Part 1, p. 1.

    Google Scholar 

  33. V. Yu. Terebizh, Time Series Analysis in Astrophysics (Nauka, Moscow, 1992).

    Google Scholar 

  34. D. L. Snyder, A. M. Hammoud, and R. L. White, J. Opt. Soc. Amer. A 10, 1014 (1993).

    Article  ADS  Google Scholar 

  35. R. A. Fisher, Phil. Trans. R. Soc. London A 222, 309 (1922).

    Article  ADS  Google Scholar 

  36. M. Kendall and A. Stewart, The Advanced Theory of Statistics. Inference and Relationship (Griffin, London, 1969; Nauka, Moscow, 1973).

    Google Scholar 

  37. A. A. Borovkov, Mathematical Statistics (Nauka, Moscow, 1984).

    Google Scholar 

  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge Univ., Cambridge, 1992).

    Google Scholar 

  39. W. U. Pratt, Digital Image Processing (Wiley, New York, 1978; Mir, Moscow, 1982).

    Google Scholar 

  40. R. A. Fisher, Messenger of Mathematics 41, 150 (1912).

    Google Scholar 

  41. R. Fletcher, Practical Methods of Optimization, vol. 1, Unconstrained Optimization (Wiley, New York, 1980), Vol. 1.

    MATH  Google Scholar 

  42. J. R. Fienup and C. C. Wackerman, J. Opt. Soc. Amer. A 3, 1897 (1986).

    ADS  Google Scholar 

  43. M. Loeve, Probability Theory (Van Nostrand, New York, 1963; Inostrannaya Literatura, Moscow, 1962).

    MATH  Google Scholar 

  44. A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, New Jersey, 1989).

    MATH  Google Scholar 

  45. F. Roddier, M. Northcott, and J. E. Graves, Publ. Astron. Soc. Pacif. 103, 131 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 26, No. 1, 2000, pp. 57–69.

Original Russian Text Copyright © 2000 by Terebizh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terebizh, V.Y. On the stability of the phase problem. Astron. Lett. 26, 49–60 (2000). https://doi.org/10.1134/1.20368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.20368

Keywords

Navigation