Skip to main content
Log in

Surface gravity waves in deep fluid at vertical shear flows

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Special features of surface gravity waves in a deep fluid flow with a constant vertical shear of velocity is studied. It is found that the mean flow velocity shear leads to a nontrivial modification of the dispersive characteristics of surface gravity wave modes. Moreover, the shear induces generation of surface gravity waves by internal vortex mode perturbations. The performed analytical and numerical study show that surface gravity waves are effectively generated by the internal perturbations at high shear rates. The generation is different for the waves propagating in the different directions. The generation of surface gravity waves propagating along the main flow considerably exceeds the generation of surface gravity waves in the opposite direction for relatively small shear rates, whereas the latter wave is generated more effectively for high shear rates. From the mathematical standpoint, the wave generation is caused by non-self-adjointness of the linear operators that describe the shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kelvin, Philos. Mag. 42, 368 (1871).

    Google Scholar 

  2. P. O. Phillips, J. Fluid Mech. 2, 417 (1957).

    ADS  MATH  MathSciNet  Google Scholar 

  3. J. W. Miles, J. Fluid Mech. 3, 185 (1957).

    ADS  MATH  MathSciNet  Google Scholar 

  4. J. W. Miles, J. Fluid Mech. 6, 585 (1959).

    ADS  Google Scholar 

  5. J. W. Miles, J. Fluid Mech. 10, 496 (1961).

    ADS  MATH  MathSciNet  Google Scholar 

  6. J. W. Miles, J. Fluid Mech. 13, 433 (1962).

    ADS  MATH  MathSciNet  Google Scholar 

  7. K. Kajiura, J. Oceanogr. Soc. Jpn. 18, 51 (1962).

    Google Scholar 

  8. K. Kajiura, J. Oceanogr. Soc. Jpn. 28, 32 (1972).

    Google Scholar 

  9. H. C. Kranzer and J. B. Keller, J. Appl. Phys. 30, 398 (1959).

    Article  MathSciNet  Google Scholar 

  10. P. Goldreich and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 130, 125 (1965).

    ADS  Google Scholar 

  11. W. O. Criminale and P. G. Drazin, Stud. Appl. Math. 83, 123 (1990).

    MathSciNet  Google Scholar 

  12. G. D. Chagelishvili, A. D. Rogava, and D. G. Tsiklauri, Phys. Rev. E 53, 6028 (1996).

    Article  ADS  Google Scholar 

  13. S. J. Chapman, J. Fluid Mech. 451, 35 (2002).

    ADS  MATH  MathSciNet  Google Scholar 

  14. G. D. Chagelishvili, A. G. Tevzadze, G. Bodo, and S. S. Moiseev, Phys. Rev. Lett. 79, 3178 (1997).

    Article  ADS  Google Scholar 

  15. G. D. Chagelishvili, R. G. Chanishvili, J. G. Lominadze, and A. G. Tevzadze, Phys. Plasmas 4, 259 (1997).

    ADS  MathSciNet  Google Scholar 

  16. A. D. Rogava, S. Poedts, and S. M. Mahajan, Astron. Astrophys. 354, 749 (2000).

    ADS  Google Scholar 

  17. A. D. D. Craik, J. Fluid Mech. 37, 531 (1968).

    ADS  Google Scholar 

  18. V. I. Shrira, J. Fluid Mech. 252, 565 (1993).

    ADS  MATH  MathSciNet  Google Scholar 

  19. D. V. Chalikov, Dokl. Akad. Nauk SSSR 229, 1083 (1976).

    Google Scholar 

  20. D. V. Chalikov and V. K. Makin, Boundary-Layer Meteorol. 56, 83 (1991).

    Article  ADS  Google Scholar 

  21. J. P. Janssen, The Interaction of Ocean Waves and Wind (Cambridge Univ. Press, Cambridge, 2004).

    Google Scholar 

  22. V. E. Zakharov and N. N. Philonenko, Sov. Phys. Dokl. 11, 881 (1967).

    Google Scholar 

  23. S. A. Kitaigorodskii, J. Phys. Oceanogr. 13, 816 (1983).

    Google Scholar 

  24. V. E. Zakharov, Eur. J. Mech. B 18, 327 (1999).

    MATH  Google Scholar 

  25. S. A. Kitaigorodskii and J. L. Lumley, J. Phys. Oceanogr. 13, 1977 (1983).

    Google Scholar 

  26. P. A. Chang, U. Piomelli, and W. K. Blake, Phys. Fluids 11, 3434 (1999).

    ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 4th ed. (Nauka, Moscow, 1988; Pergamon, New York, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 1, 2005, pp. 193–200.

Original English Text Copyright © 2005 by Gogoberidze, Samushia, Chagelishvili, Lominadze, Horton.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogoberidze, G., Samushia, L., Chagelishvili, G.D. et al. Surface gravity waves in deep fluid at vertical shear flows. J. Exp. Theor. Phys. 101, 169–176 (2005). https://doi.org/10.1134/1.2010673

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010673

Keywords

Navigation