Skip to main content
Log in

Effect of a cluster structure on the interaction of electron and magnetic subsystems in LaCa(Sr)MnO epilayers

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure, electrical, and magnetic properties of epitaxial LaCa(Sr)MnO single crystal films with a clustered structure have been studied. In films with a “metallic” phase content C 0m ≤0.15, the electric conductivity is determined by the spin-dependent tunneling of charge carriers between “ metallic” clusters, and the magnetoresistance is maximum at T = 4.2 K. The correlated motion of carriers over the system of tunneling-linked clusters leads to the formation of a window in the Coulomb blockade. The interactions between atomic, magnetic, and electron subsystems increase in the vicinity of the dielectric-metal percolation transition (T = 200–210 K), where the metal phase content C m in the samples with C 0m ≥0.2 reaches a maximum (C critm = 0.5) due to an increase in the cluster size upon cooling. In this case, the magnetoresistance exhibits a maximum at T = 260 K, on the dielectric side of the percolation transition. Due to the presence of space charge regions at the periphery of the clusters, the content of a ferromagnetic phase is 1.5–2 times that of the “metallic” phase. For this reason, the calculations are performed using a model combining the tunneling conductivity mechanism with the percolation approximation for the description of magnetization. Allowance for the Coulomb interaction between charge carriers and clusters improves the agreement of theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  2. L. P. Gor’kov, Usp. Fiz. Nauk 168, 665 (1998) [Phys. Usp. 41, 589 (1998)].

    Google Scholar 

  3. Z. A. Samoilenko, V. D. Okunev, E. I. Pushenko, et al., Zh. Tekh. Fiz. 73(2), 118 (2003) [Tech. Phys. 48, 250 (2003)].

    Google Scholar 

  4. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

  5. A. Urushibara, Y. Moritomo, T. Arima, et al., Phys. Rev. B 51,14 103 (1995).

    Google Scholar 

  6. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  7. A. Biswas, A. K. Raychaudhuri, and R. Mahendiran, J. Phys.: Condens. Matter 9, L355 (1997).

    Article  ADS  Google Scholar 

  8. A. Biswas, M. Rajeswari, R. C. Srivastava, et al., Phys. Rev. B 63, 184424 (2001).

    Google Scholar 

  9. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  10. M. F. Hundley and J. J. Neumeier, Phys. Rev. B 55, 11511 (1997).

    Google Scholar 

  11. S. V. Trukhanov, I. O. Troyanchuk, N. V. Pushkarev, and H. Szymczak, Zh. Éksp. Teor. Fiz. 122, 356 (2002) [JETP 95, 308 (2002)].

    Google Scholar 

  12. H. L. Ju and Hyunchul Sohn, J. Magn. Magn. Mater. 167, 200 (1997).

    Article  ADS  Google Scholar 

  13. S. H. Chun, Y. Lyanda-Geller, M. B. Salamon, et al., J. Appl. Phys. 90, 6307 (2001).

    Article  ADS  Google Scholar 

  14. N. G. Bebenin, R. I. Zainullina, V. V. Mashkautsan, et al., Zh. Éksp. Teor. Fiz. 117, 1181 (2000) [JETP 90, 1027 (2000)].

    Google Scholar 

  15. G. Zhao, V. Smolyaninova, W. Prellier, and H. Keller, Phys. Rev. Lett. 84, 6086 (2000).

    ADS  Google Scholar 

  16. V. M. Loktev and Yu. G. Pogorelov, Fiz. Nizk. Temp. 26, 231 (2000) [Low Temp. Phys. 26, 171 (2000)].

    Google Scholar 

  17. V. D. Okunev, Z. A. Samoilenko, A. Abal’oshev, et al., Appl. Phys. Lett. 75, 1949 (1999).

    Article  ADS  Google Scholar 

  18. V. D. Okunev, Z. A. Samoilenko, V. M. Svistunov, et al., J. Appl. Phys. 85, 7282 (1999).

    Article  ADS  Google Scholar 

  19. V. D. Okunev, Z. A. Samoilenko, T. A. D’yachenko, et al., Fiz. Tverd. Tela (St. Petersburg) 46, 1829 (2004) [Phys. Solid State 46, 1895 (2004)].

    Google Scholar 

  20. Z. A. Samoilenko, V. D. Okunev, E. I. Pushenko, et al., Acta Phys. Pol. A 105, 93 (2004).

    Google Scholar 

  21. Z. A. Samoilenko, V. D. Okunev, T. A. D’yachenko, et al., Zh. Tekh. Fiz. 74(5), 50 (2004) [Tech. Phys. 49, 572 (2004)].

    Google Scholar 

  22. Z. A. Samoilenko, V. D. Okunev, E. I. Pushenko, et al., Zh. Tekh. Fiz. 74(4), 58 (2004) [Tech. Phys. 49, 435 (2004)].

    Google Scholar 

  23. V. D. Okunev, Z. A. Samoilenko, A. Abal’oshev, et al., Phys. Lett. A 325, 79 (2004).

    Article  ADS  Google Scholar 

  24. V. E. Naish, Fiz. Met. Metalloved. 92(5), 16 (2001) [Phys. Met. Metallogr. 92, 437 (2001)].

    Google Scholar 

  25. M. D. Coey, M. Viret, L. Ranno, and K. Ounagjela, Phys. Rev. Lett. 75, 3910 (1995).

    Article  ADS  Google Scholar 

  26. J. B. Goodenough, J.-S. Zhou, F. Rivadulla, and E. Winkler, J. Solid State Chem. 175, 116 (2003).

    Article  ADS  Google Scholar 

  27. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).

    Google Scholar 

  28. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979).

    Google Scholar 

  29. A. E. Kar’kin, D. A. Shulyatev, A. A. Arsenov, et al., Zh. Éksp. Teor. Fiz. 116, 671 (1999) [JETP 89, 358 (1999)].

    Google Scholar 

  30. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

  31. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  32. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  33. A. B. Khanikaev, A. B. Granovskii, and J. P. Clerc, Fiz. Tverd. Tela (St. Petersburg) 44, 1537 (2002) [Phys. Solid State 44, 1611 (2002)].

    Google Scholar 

  34. J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).

    Article  ADS  Google Scholar 

  35. S. Lee, H. Y. Hwang, B. I. Shraiman, et al., Phys. Rev. Lett. 82, 4508 (1999).

    ADS  Google Scholar 

  36. N. Zhang, W. Ding, W. Zhong, et al., Phys. Rev. B 56, 8138 (1997).

    ADS  Google Scholar 

  37. C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera, Phys. Rev. B 58, R2917 (1998).

  38. P. Lyu, D. Y. Xing, and J. Dong, J. Magn. Magn. Mater. 202, 405 (1999).

    Article  ADS  Google Scholar 

  39. A. Gupta and J. Z. Sun, J. Magn. Magn. Mater. 200, 24 (1999).

    Article  ADS  Google Scholar 

  40. R. A. Smith, Semiconductors (Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  41. V. D. Okunev, Z. A. Samoilenko, A. Abal’oshev, et al., Phys. Rev. B 62, 696 (2000).

    Article  ADS  Google Scholar 

  42. V. D. Okunev, N. N. Pafomov, V. A. Isaev, et al., Fiz. Tverd. Tela (St. Petersburg) 44, 150 (2002) [Phys. Solid State 44, 157 (2002)].

    Google Scholar 

  43. N. N. Loshkareva, Yu. P. Sukhorukov, V. E. Arkhipov, et al., Fiz. Tverd. Tela (St. Petersburg) 41, 475 (1999) [Phys. Solid State 41, 426 (1999)].

    Google Scholar 

  44. A. S. Moskvin, E. V. Zenkov, Yu. D. Panov, et al., Fiz. Tverd. Tela (St. Petersburg) 44, 1452 (2002) [Phys. Solid State 44, 1519 (2002)].

    Google Scholar 

  45. N. N. Loshkareva, Yu. P. Sukhorukov, E. V. Mostovshchikova, et al., Zh. Éksp. Teor. Fiz. 121, 412 (2002) [JETP 94, 350 (2002)].

    Google Scholar 

  46. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  47. R. V. Demin, L. I. Koroleva, R. Szymszak, and H. Szymczak, Pis’ma Zh. Éksp. Teor. Fiz. 75, 402 (2002) [JETP Lett. 75, 331 (2002)].

    Google Scholar 

  48. R. I. Zainullina, N. G. Bebenin, V. V. Mashkautsan, et al., Fiz. Tverd. Tela (St. Petersburg) 45, 1671 (2003) [Phys. Solid State 45, 1754 (2003)].

    Google Scholar 

  49. M. O. Dzero, L. P. Gor’kov, and V. Z. Kresin, Eur. Phys. J. B 14, 459 (2000).

    Article  ADS  Google Scholar 

  50. S. de Brion, F. Ciorcas, G. Chouteau, et al., Phys. Rev. B 59, 1304 (1999).

    ADS  Google Scholar 

  51. U. Staub, G. I. Meijer, F. Fauth, et al., Phys. Rev. Lett. 88, 126402 (2002).

  52. É. A. Neifel’d, V. E. Arkhipov, N. A. Tumalevich, and Ya. M. Mukovskii, Pis’ma Zh. Éksp. Teor. Fiz. 74, 630 (2001) [JETP Lett. 74, 556 (2001)].

    Google Scholar 

  53. S. F. Dubinin, V. E. Arkhipov, Ya. M. Mukovskii, et al., Fiz. Met. Metalloved. 93(3), 60 (2002) [Phys. Met. Metallogr. 93, 248 (2002)].

    Google Scholar 

  54. P. Sheng, Philos. Mag. B 65, 357 (1992).

    Google Scholar 

  55. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  ADS  Google Scholar 

  56. E. Z. Meilikhov, Zh. Éksp. Teor. Fiz. 115, 1484 (1999) [JETP 88, 819 (1999)].

    Google Scholar 

  57. L. I. Glazman and M. É. Raikh, Pis’ma Zh. Éksp. Teor. Fiz. 47, 378 (1988) [JETP Lett. 47, 452 (1988)].

    Google Scholar 

  58. T. K. Ng and H. F. Lee, Phys. Rev. Lett. 61, 1768 (1988).

    ADS  Google Scholar 

  59. K. Kikoin and Y. Avishai, Phys. Rev. Lett. 86, 2090 (2001).

    Article  ADS  Google Scholar 

  60. K. I. Kugel’, A. L. Rakhmanov, A. O. Sboichikov, et al., Zh. Éksp. Teor. Fiz. 125, 648 (2004) [JETP 98, 572 (2004)].

    Google Scholar 

  61. V. D. Okunev and N. N. Pafomov, Zh. Éksp. Teor. Fiz. 116, 276 (1999) [JETP 89, 151 (1999)].

    Google Scholar 

  62. V. V. Runov, D. Yu. Chernyshev, A. I. Kurbakov, et al., Zh. Éksp. Teor. Fiz. 118, 1174 (2000) [JETP 91, 1017 (2000)].

    Google Scholar 

  63. I. Ya. Korenblit and E. F. Shender, Usp. Fiz. Nauk 126, 233 (1978) [Sov. Phys. Usp. 21, 832 (1978)].

    Google Scholar 

  64. É. L. Nagaev, Fiz. Tverd. Tela (St. Petersburg) 40, 2069 (1998) [Phys. Solid State 40, 1873 (1998)].

    Google Scholar 

  65. J. I. Gittleman, Y. Goldstein, and S. Bozowic, Phys. Rev. B 5, 3609 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 1, 2005, pp. 150–167.

Original Russian Text Copyright © 2005 by Okunev, Samoilenko, Szymczak, Lewandowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okunev, V.D., Samoilenko, Z.A., Szymczak, R. et al. Effect of a cluster structure on the interaction of electron and magnetic subsystems in LaCa(Sr)MnO epilayers. J. Exp. Theor. Phys. 101, 128–144 (2005). https://doi.org/10.1134/1.2010669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010669

Keywords

Navigation