Skip to main content
Log in

Metastable helium cluster He *4

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The existence of a metastable cluster He *4 with total spin S = 2 is predicted. The cluster consists of two covalently bound excited spin-polarized triplet He *2 molecules and is rectangular in shape. The electron wavefunctions, the dependence of the energy He *4 system on the distance between the He *2 triplet molecules, the atomic spacing, the frequency spectrum of natural oscillations of the cluster, and other characteristics are calculated from first principles. It is shown that the metastable state is formed if one of the excited He *2 molecules is in the 3Σ +u state, while the other is in the 3Πg state. The radiation lifetime τ of the metastable cluster He *4 is calculated; it is found to range from 100 to 200 s, which is much longer than the lifetime τ ≈ 20 s of the triplet molecule He *2 (3Σ +u ). The height U ≈ 0.5 eV of the potential barrier preventing the departure from the local energy minimum is determined. The energy E acc ≈ 9 eV/atom accumulated in the He *4 cluster is calculated; this energy considerably exceeds the energy of known chemical energy carriers. It is shown that the accumulated energy is released virtually completely during decomposition of the He *4 cluster into individual helium atoms. This means that helium clusters are a promising material with a high accumulated energy density (HEDM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. T. L. Makarova, B. Sundqvist, R. Hohne, et al., Nature 413, 716 (2001).

    Article  ADS  Google Scholar 

  3. A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, et al., Nature 350, 600 (1991).

    Article  ADS  Google Scholar 

  4. V. F. Elesin, N. N. Degtyarenko, and L. A. Openov, Inzh. Fiz., No. 3, 2 (2002).

  5. D. N. McKinsey, C. R. Brome, J. S. Butterworth, et al., Phys. Rev. A 59, 200 (1999).

    Article  ADS  Google Scholar 

  6. C. F. Chabalowski, J. O. Jensen, D. R. Yarkony, and B. H. Lengsfield III, J. Chem. Phys. 90, 2504 (1989).

    Article  ADS  Google Scholar 

  7. A. V. Konovalov and G. V. Shlyapnikov, Zh. Éksp. Teor. Fiz. 100, 521 (1991) [Sov. Phys. JETP 73, 286 (y1991)].

    Google Scholar 

  8. S. Sokolova, A. Lüchow, and J. B. Anderson, Chem. Phys. Lett. 323, 229 (2000).

    Article  Google Scholar 

  9. S. Fujinaga, Method of Molecular Orbitals (Iwanami Shoten, Tokyo, 1980; Mir, Moscow, 1983).

    Google Scholar 

  10. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

  12. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

    Article  ADS  Google Scholar 

  13. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    ADS  Google Scholar 

  15. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  16. G. D. Fletcher, M. W. Schmidt, and M. S. Gordon, Adv. Chem. Phys. 110, 267 (1999).

    Google Scholar 

  17. C. W. H. Drake, Phys. Rev. A 3, 908 (1971).

    Article  ADS  Google Scholar 

  18. C. A. Coulson, Valence (Oxford Univ. Press, Oxford, 1961; Mir, Moscow, 1965).

    Google Scholar 

  19. H. Buchenau, J. P. Toennies, and J. A. Northby, J. Chem. Phys. 95, 8134 (1991).

    Article  ADS  Google Scholar 

  20. B. von Issendorff, H. Haberland, R. Fröchtenicht, and J. P. Toennies, Chem. Phys. Lett. 233, 23 (1995).

    Google Scholar 

  21. É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov, Khim. Fiz. 18, 88 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 1, 2005, pp. 54–66.

Original Russian Text Copyright © 2005 by Elesin, Degtyarenko, Matveev, Podlivaev, Openov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elesin, V.F., Degtyarenko, N.N., Matveev, N.V. et al. Metastable helium cluster He *4 . J. Exp. Theor. Phys. 101, 44–55 (2005). https://doi.org/10.1134/1.2010660

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010660

Keywords

Navigation