Skip to main content
Log in

Temporal self-action and compression of intense ultrashort laser pulses in hollow photonic-crystal waveguides

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Hollow-core waveguides with a periodic (photonic-crystal) cladding are shown to allow efficient temporal compression of high-intensity ultrashort laser pulses and formation of megawatt soliton-like features in the regime of robust isolated guided modes. We numerically analyze the temporal envelope evolution and spectral transformation of the light field in air-guided modes of gas-filled hollow coaxial periodic Bragg waveguides. Based on this analysis, we define optimal compression regimes, permitting high compression ratios (of about six) and high compression efficiencies (up to 73%) to be achieved for microjoule laser pulses with an initial pulse length of 80–400 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

    Google Scholar 

  2. P. N. Butcher and D. Cotter, The Principles of Nonlinear Optics (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  3. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989; Mir, Moscow, 1996).

    Google Scholar 

  5. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, Berlin, 2003).

    Google Scholar 

  6. G. I. Stegeman and M. Segev, Science 286, 1518 (1999).

    Article  Google Scholar 

  7. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

    Google Scholar 

  8. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  9. A. M. Zheltikov, Usp. Fiz. Nauk 172, 743 (2002) [Phys. Usp. 45, 687 (2002)].

    Google Scholar 

  10. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).

    ADS  Google Scholar 

  11. M. Nisoli, S. De Silvestri, O. Svelto, et al., Opt. Lett. 22, 522 (1997).

    ADS  Google Scholar 

  12. N. Zhavoronkov and G. Korn, Phys. Rev. Lett. 88, 203901 (2002).

    Google Scholar 

  13. A. Rundquist, C. G. Durfee III, Z. Chang, et al., Science 280, 1412 (1998).

    Article  ADS  Google Scholar 

  14. E. Constant, D. Garzella, P. Breger, et al., Phys. Rev. Lett. 82, 1668 (1999).

    Article  ADS  Google Scholar 

  15. C. G. Durfee III, A. R. Rundquist, S. Backus, et al., Phys. Rev. Lett. 83, 2187 (1999).

    Article  ADS  Google Scholar 

  16. A. Paul, R. A. Bartels, R. Tobey, et al., Nature 421, 51 (2003).

    Article  ADS  Google Scholar 

  17. R. B. Miles, G. Laufer, and G. C. Bjorklund, Appl. Phys. Lett. 30, 417 (1977).

    Article  ADS  Google Scholar 

  18. A. B. Fedotov, F. Giammanco, A. N. Naumov, et al., Appl. Phys. B 72, 575 (2001).

    ADS  Google Scholar 

  19. A. N. Naumov, F. Giammanco, D. A. Sidorov-Biryukov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73, 301 (2001) [JETP Lett. 73, 263 (2001)].

    Google Scholar 

  20. R. F. Cregan, B. J. Mangan, J. C. Knight, et al., Science 285, 1537 (1999).

    Article  Google Scholar 

  21. P. St. J. Russell, Science 299, 358 (2003).

    Article  ADS  Google Scholar 

  22. A. M. Zheltikov, Optics of Microstructure Fibers (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  23. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, et al., Pis’ma Zh. Éksp. Teor. Fiz. 76, 401 (2002) [JETP Lett. 76, 341 (2002)].

    Google Scholar 

  24. G. Bouwmans, F. Luan, J. C. Knight, et al., Opt. Express 11, 1613 (2003).

    ADS  Google Scholar 

  25. J. C. Knight, Nature 424, 847 (2003).

    Article  ADS  Google Scholar 

  26. C. M. Smith, N. Venkataraman, M. T. Gallagher, et al., Nature 424, 657 (2003).

    Article  ADS  Google Scholar 

  27. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).

    Article  ADS  Google Scholar 

  28. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, Opt. Lett. 28, 1448 (2003).

    ADS  Google Scholar 

  29. S. O. Konorov, E. E. Serebryannikov, A. A. Ivanov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 79, 499 (2004) [JETP Lett. 79, 395 (2004)].

    Google Scholar 

  30. S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, et al., Appl. Phys. B 78, 547 (2004).

    ADS  Google Scholar 

  31. S. O. Konorov, A. M. Zheltikov, Ping Zhou, et al., Opt. Lett. 29, 1521 (2004).

    ADS  Google Scholar 

  32. D. G. Ouzounov, F. R. Ahmad, D. Müller, et al., Science 301, 1702 (2003).

    Article  ADS  Google Scholar 

  33. F. Luan, J. C. Knight, P. St. J. Russell, et al., Opt. Express 12, 835 (2004).

    Article  ADS  Google Scholar 

  34. F. Benabid, J. C. Knight, and P. St. J. Russell, Opt. Express 10, 1195 (2002).

    ADS  Google Scholar 

  35. S. O. Konorov, D. A. Sidorov-Biryukov, I. Bugar, et al., Phys. Rev. A 70, 023807 (2004).

    Google Scholar 

  36. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, et al., J. Phys. D: Appl. Phys. 36, 1375 (2003).

    Article  ADS  Google Scholar 

  37. J. D. Shephard, J. D. C. Jones, D. P. Hand, et al., Opt. Express 12, 717 (2004).

    Article  ADS  Google Scholar 

  38. S. O. Konorov, A. B. Fedotov, V. P. Mitrokhin, et al., Appl. Opt. 43, 2251 (2004).

    Article  ADS  Google Scholar 

  39. P. Yeh, A. Yariv, and E. Marom, J. Opt. Soc. Am. 68, 1196 (1978).

    ADS  Google Scholar 

  40. Yong Xu, R. K. Lee, and A. Yariv, Opt. Lett. 25, 1756 (2000).

    ADS  Google Scholar 

  41. G. Ouyang, Yong Xu, and A. Yariv, Opt. Express 9, 733 (2001).

    ADS  Google Scholar 

  42. T. Kawanishi and M. Izutsu, Opt. Express 7, 10 (2000).

    ADS  Google Scholar 

  43. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, et al., Opt. Express 9, 748 (2001).

    ADS  Google Scholar 

  44. M. Ibanescu, Y. Fink, S. Fan, et al., Science 289, 415 (2000).

    Article  ADS  Google Scholar 

  45. S. O. Konorov, O. A. Kolevatova, A. B. Fedotov, et al., Zh. Éksp. Teor. Fiz. 123, 975 (2003) [JETP 96, 857 (2003)].

    Google Scholar 

  46. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  47. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).

    Google Scholar 

  48. A. V. Husakou and J. Herrmann, J. Opt. Soc. Am. B 19, 2171 (2002).

    ADS  Google Scholar 

  49. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 128, No. 1, 2005, pp. 5–16.

Original Russian Text Copyright © 2005 by Bessonov, Serebryannikov, Zheltikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessonov, A.D., Serebryannikov, E.E. & Zheltikov, A.M. Temporal self-action and compression of intense ultrashort laser pulses in hollow photonic-crystal waveguides. J. Exp. Theor. Phys. 101, 1–10 (2005). https://doi.org/10.1134/1.2010656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010656

Keywords

Navigation