Skip to main content
Log in

Radiation of a quantized black hole

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum and the value of the Barbero-Immirzi parameter are found. The discrete spectrum of thermal radiation of a black hole naturally fits the Wien profile. The natural widths of the lines are very small as compared to the distances between them. The total intensity of the thermal radiation is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974).

    ADS  Google Scholar 

  2. D. Christodoulu, Phys. Rev. Lett. 25, 1596 (1970).

    ADS  Google Scholar 

  3. D. Christodoulu and R. Ruffini, Phys. Rev. D 4, 3552 (1971).

    ADS  Google Scholar 

  4. I. B. Khriplovich, Phys. Lett. B 431, 19 (1998); gr-qc/9804004.

    ADS  MathSciNet  Google Scholar 

  5. I. B. Khriplovich, Zh. Éksp. Teor. Fiz. 126, 527 (2004) [JETP 99, 460 (2004)]; gr-qc/0404083.

    MathSciNet  Google Scholar 

  6. I. B. Khriplovich, gr-qc/0409031.

  7. C. Rovelli and L. Smolin, Nucl. Phys. B 442, 593 (1995); 456, 753(E) (1995); gr-qc/9411005.

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Ashtekar and J. Lewandowski, Class. Quantum Grav. 14, 55 (1997); gr-qc/9602046.

    ADS  MathSciNet  Google Scholar 

  9. R. Loll, Phys. Rev. Lett. 75, 3048 (1995); gr-qc/9506014; Nucl. Phys. B 460, 143 (1996); gr-qc/9511030.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. R. De Pietri and C. Rovelli, Phys. Rev. D 54, 2664 (1996); gr-qc/9602023.

    ADS  MathSciNet  Google Scholar 

  11. S. Frittelli, L. Lehner, and C. Rovelli, Class. Quantum Grav. 13, 2921 (1996); gr-qc/9608043.

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Immirzi, Class. Quantum Grav. 14, L177 (1997); gr-qc/9701052.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. C. Rovelli and T. Thiemann, Phys. Rev. D 57, 1009 (1998); gr-qc/9705059.

    Article  ADS  MathSciNet  Google Scholar 

  14. J. D. Bekenstein, in Cosmology and Gravitation, Ed. by M. Novello (Atlantisciences, France, 2000); gr-qc/9808028.

    Google Scholar 

  15. C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996); gr-qc/9603063.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. K. V. Krasnov, Phys. Rev. D 55, 3505 (1997); gr-qc/9603025; Gen. Relativ. Gravit. 30, 53 (1998); gr-qc/9605047; Class. Quantum Grav. 16, 563 (1999); gr-qc/9710006.

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev. Lett. 80, 904 (1998); gr-qc/9710007.

    Article  ADS  MathSciNet  Google Scholar 

  18. J. A. Wheeler, in Sakharov Memorial Lectures in Physics: Proceedings of the First International Sakharov Conference on Physics, Ed. by L. V. Keldysh and V. Ya. Feinberg (Moscow, 1991), Vol. 2, p. 751.

  19. M. Domagala and J. Lewandowski, Class. Quantum Grav. 21, 5233 (2004); gr-qc/0407051.

    Article  ADS  MathSciNet  Google Scholar 

  20. K. Meissner, Class. Quantum Grav. 21, 5245 (2004); gr-qc/0407052.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. A. Ashtekar, gr-qc/0410054.

  22. J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).

    ADS  MathSciNet  Google Scholar 

  23. G.’t Hooft, in Salam Festschrift (World Sci., Singapore, 1993); gr-qc/9310026.

    Google Scholar 

  24. L. Susskind, J. Math. Phys. 36, 6377 (1995); gr-qc/9710007.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. R. V. Korkin and I. B. Khriplovich, Zh. Éksp. Teor. Fiz. 122, 5 (2002) [JETP 95, 1 (2002)]; gr-qc/0112074.

    MathSciNet  Google Scholar 

  26. A. Ghosh and P. Mitra, gr-qc/0411035.

  27. A. Ashtekar, S. Fairhurst, and B. Krishnan, Phys. Rev. D 62, 104025 (2000); gr-qc/0005083.

  28. A. Ashtekar, C. Beetle, and J. Lewandowski, Class. Quantum Grav. 19, 1195 (2002); gr-qc/0111067.

    Article  ADS  MathSciNet  Google Scholar 

  29. J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7 (1995); gr-qc/9505012.

    ADS  MathSciNet  Google Scholar 

  30. M. Barreira, M. Carfora, and C. Rovelli, Gen. Relativ. Gravit. 28, 1293 (1996); gr-qc/9603064.

    Article  ADS  MathSciNet  Google Scholar 

  31. I. B. Khriplovich, Zh. Éksp. Teor. Fiz. 115, 1539 (1999) [JETP 88, 845 (1999)]; gr-qc/9812060.

    MathSciNet  Google Scholar 

  32. R. V. Korkin and I. B. Khriplovich, Zh. Éksp. Teor. Fiz. 121, 531 (2002) [JETP 94, 453 (2002)]; gr-qc/0107101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 127, No. 6, 2005, pp. 1223–1229.

Original English Text Copyright © 2005 by Khriplovich.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khriplovich, I.B. Radiation of a quantized black hole. J. Exp. Theor. Phys. 100, 1075–1081 (2005). https://doi.org/10.1134/1.1995791

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1995791

Keywords

Navigation