Skip to main content
Log in

Determination of rovibronic term values of a diatomic molecule from experimental data on the wavenumbers of spectral lines

  • Atoms, Spectra, Radiations
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

It has been shown that, if experimental data are available on the lines of the rovibronic spectrum of a diatomic molecule that pairwise couple three or more vibronic states, then there is a relation between the wavenumbers measured for the lines and the absolute values of all corresponding rovibronic term values. A method is proposed for determining the optimal set of rovibronic term values with error estimations by varying the desired values of the rovibronic term values so as to minimize the weighted standard deviation of the wavenumbers that are calculated according to the Rydberg-Ritz combination principle from the wavenumbers measured for a sufficiently large number of rovibronic spectral lines of various systems of bands. It is substantial that this method does not require any assumptions on the molecular structure. The new method is applied to determine the rovibronic term values of 12 singlet electronic states of the isotopomer 11B1H of the boron hydride molecule, which have already been studied experimentally, with the use of all available experimental data for 15 systems of bands, which are obtained in 10 works. Thus, the energy spectrum of the diatomic molecule has been determined from the experimental data on the wavenumbers of rovibronic spectral lines without any assumption on its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1: Spectra of Diatomic Molecules (Van Nostrand, New York, 1959).

    Google Scholar 

  2. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 4: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979; Mir, Moscow, 1984).

    Google Scholar 

  3. http://webbook.nist.gov/chemistry.

  4. B. P. Lavrov, V. P. Prosikhin, and V. I. Ustimov, Izv. Vyssh. Uchebn. Zaved. 29(2), 66 (1986).

    Google Scholar 

  5. N. Åslund, Ark. Fys. 30(25), 377 (1965).

    Google Scholar 

  6. D. L. Albriton, W. J. Harrop, A. L. Schmeltekopf, et al., J. Mol. Spectrosc. 46, 67 (1973).

    ADS  Google Scholar 

  7. G. H. Dieke, J. Mol. Spectrosc. 2, 494 (1958).

    Article  ADS  Google Scholar 

  8. R. S. Freund, J. A. Schiavone, and H. M. Crosswhite, J. Phys. Chem. Ref. Data 14, 235 (1985).

    ADS  Google Scholar 

  9. N. Åslund, J. Mol. Spectrosc. 50, 424 (1974).

    ADS  Google Scholar 

  10. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980; Springer, Berlin, 1985).

    Google Scholar 

  11. D. J. Hudson, Statistics. Lectures on Elementary Statistics and Probability (Geneva, 1964; Mir, Moscow, 1970).

  12. W. Lochte-Holtgreven and E. S. van der Vleugel, Z. Phys. 70, 188 (1931).

    ADS  Google Scholar 

  13. S. F. Thunberg, Z. Phys. 100, 471 (1936).

    Google Scholar 

  14. G. M. Almy and R. B. Horsfall, Phys. Rev. 51, 491 (1937).

    Article  ADS  Google Scholar 

  15. A. E. Douglas, Can. J. Res., Sect. A 19, 27 (1941).

    Google Scholar 

  16. S. H. Bauer, G. Herzberg, and J. W. Johns, J. Mol. Spectrosc. 13, 256 (1964).

    Article  ADS  Google Scholar 

  17. J. W. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).

    Article  ADS  Google Scholar 

  18. J. W. Johns and D. W. Lepard, J. Mol. Spectrosc. 55, 374 (1975).

    ADS  Google Scholar 

  19. F. S. Pianalto, L. C. O’Brien, P. C. Keller, and P. F. Bernath, J. Mol. Spectrosc. 129, 348 (1988).

    Article  ADS  Google Scholar 

  20. W. T. M. L. Fernando and P. P. Bernath, J. Mol. Spectrosc. 145, 329 (1991).

    Article  Google Scholar 

  21. J. Clark, M. Konopka, L.-M. Zhang, and E. R. Grant, Chem. Phys. Lett. 340, 45 (2001).

    Article  Google Scholar 

  22. B. P. Lavrov and M. S. Ryazanov, physics/0504044.

  23. A. I. Drachev, B. P. Lavrov, V. P. Prosikhin, and V. I. Ustimov, Khim. Fiz. 4, 1011 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 81, No. 8, 2005, pp. 459–463.

Original Russian Text Copyright © 2005 by Lavrov, Ryazanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrov, B.P., Ryazanov, M.S. Determination of rovibronic term values of a diatomic molecule from experimental data on the wavenumbers of spectral lines. Jetp Lett. 81, 371–374 (2005). https://doi.org/10.1134/1.1951010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1951010

PACS numbers

Navigation