Skip to main content
Log in

Numerical simulations of the development of an open discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from numerical simulations of the time evolution of open discharges in helium that are excited in the presence of an anode grid and generate electron beams over a wide range of helium pressures (up to ∼104 Pa). It is shown that electron emission from the cathode is almost entirely dominated by the bombardment of the cathode by heavy particles, while the contribution of photoemission is negligibly small. For conditions typical of open discharges (for a helium pressure of 4 kPa and voltage amplitude of 7.4 keV), the following percentages are obtained for the partial contributions of the main processes whereby the discharge develops: 96% for atom-electron emission, 2.3% for electron multiplication in the discharge gap, 1.7% for ion-electron emission, 2 × 10−3% for electron emission under the action of metastable atoms diffusing from the discharge gap toward the cathode, and 2 × 10−4% for photoemission from the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Batenin, V. V. Buchanov, M. A. Kazaryan, et al., Lasers on Self-Limited Transitions of Metal Atoms (Nauchnaya Kniga, Moscow, 1998).

    Google Scholar 

  2. A. P. Bokhan and P. A. Bokhan, Opt. Atmos. Okeana 15, 216 (2002).

    Google Scholar 

  3. A. R. Sorokin, Opt. Atmos. Okeana 17, 266 (2004).

    Google Scholar 

  4. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 26(24), 89 (2000) [Tech. Phys. Lett. 26, 1114 (2000)].

    Google Scholar 

  5. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 29(20), 1 (2003) [Tech. Phys. Lett. 29, 836 (2003)].

    MathSciNet  Google Scholar 

  6. A. V. Karelin, Laser Phys. 14(1), 15 (2004).

    Google Scholar 

  7. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 29(10), 15 (2003) [Tech. Phys. Lett. 29, 404 (2003)].

    Google Scholar 

  8. A. M. Boichenko, V. I. Derzhiev, A. G. Zhidkov, et al., Preprint No. 282 (Inst. of General Physics, USSR Acad. Sci., Moscow, 1987).

  9. V. I. Derzhiev, A. G. Zhidkov, O. V. Sereda, et al., Tr. Inst. Obshch. Fiz. AN SSSR 21, 139 (1989).

    Google Scholar 

  10. O. V. Sereda, Candidate’s Dissertation in Mathematics and Physics (Moscow, Inst. of General Physics, USSR Acad. Sci., 1990).

  11. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 29(17), 1 (2003) [Tech. Phys. Lett. 29, 701 (2003)].

    MathSciNet  Google Scholar 

  12. S. V. Arlantsev, B. L. Borovich, V. V. Buchanov, et al., J. Russ. Laser Res. 16(2), 99 (1995).

    Google Scholar 

  13. K. N. Ul’yanov and V. V. Chulkov, Zh. Tekh. Fiz. 58, 328 (1988) [Sov. Phys. Tech. Phys. 33, 201 (1988)].

    Google Scholar 

  14. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Éksp. Teor. Fiz. 77, 264 (2003) [JETP Lett. 77, 221 (2003)].

    Google Scholar 

  15. H. C. Hayden and N. G. Utterback, Phys. Rev. A 135, A1575 (1964).

  16. V. I. Derzhiev, A. G. Zhidkov, and S. I. Yakovlenko, Radiation from Ions in a Nonequlibrium Dense Plasma (Énergoatomizdat, Moscow, 1986).

    Google Scholar 

  17. B. N. Klyarfel’d and B. I. Moskalev, Zh. Tekh. Fiz. 39, 1066 (1969) [Sov. Phys. Tech. Phys. 14, 800 (1969)].

    Google Scholar 

  18. G. V. Kolbychev and E. A. Samyshkin, Zh. Tekh. Fiz. 51, 2032 (1981) [Sov. Phys. Tech. Phys. 26, 1185 (1981)].

    Google Scholar 

  19. G. V. Kolbychev, Opt. Atmos. Okeana 6, 635 (1993).

    Google Scholar 

  20. M. A. Zav’yalov, Yu. E. Kreindel’, A. A. Novikov, et al., Plasma Processes in Technological Electron Guns (Énergoatomizdat, Moscow, 1989).

    Google Scholar 

  21. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 29(9), 42 (2003) [Tech. Phys. Lett. 29, 373 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 31, No. 6, 2005, pp. 567–571.

Original Russian Text Copyright © 2005 by Karelin, Sorokin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karelin, A.V., Sorokin, A.R. Numerical simulations of the development of an open discharge. Plasma Phys. Rep. 31, 519–523 (2005). https://doi.org/10.1134/1.1947337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1947337

Keywords

Navigation