Skip to main content
Log in

Flavored exotic multibaryons and hypernuclei in topological soliton models

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The energies of baryon states with positive strangeness, or anticharm (antibeauty), are estimated in the chiral soliton approach, in the “rigid oscillator” version of the bound-state soliton model proposed by Klebanov and Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (Θ-hypernuclei), and the states with heavy antiflavors can be bound with respect to strong interactions in the original Skyrme variant of the model (SK4 variant). The binding energies of antiflavored states are also estimated in the variant of the model with a sixth-order term in chiral derivatives added to the Lagrangian to stabilize solitons (SK6 variant). This variant is less attractive, and nuclear states with anticharm and antibeauty can be unstable relative to strong interactions. The chances of obtaining bound hypernuclei with heavy antiflavors increase within the “nuclear variant” of the model with a rescaled model parameter (the Skyrme constant e or e′ decreased by a out 30%), which is expected to be valid for baryon numbers greater than B ∼ 10. The rational map approximation is used to describe multiskyrmions with a baryon number of up to about 30 and to calculate the quantities necessary for their quantization (moments of inertia, sigma term, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nakano et al. (LEPS Collab.), Phys. Rev. Lett. 91, 012002 (2003); hep-ex/03010020; V. V. Barmin et al. (DIANA Collab.), Yad. Fiz. 66, 1763 (2003) [Phys. At. Nucl. 66, 1715 (2003)]; hep-ex/0304040.

  2. S. Stepanyan et al. (CLAS Collab.), Phys. Rev. Lett. 91, 252001 (2003); J. Barth et al. (SAPHIR Collab.), Phys. Lett. B 572, 127 (2003); V. Kubarovsky and S. Stepanyan (CLAS Collab.), AIP Conf. Proc. 698, 543 (2003); hep-ex/0307088; A. E. Asratyan, A. G. Dolgolenko, and M. A. Kubantsev, Yad. Fiz. 67, 704 (2004) [Phys. At. Nucl. 67, 682 (2004)]; V. Kubarovsky et al. (CLAS Collab.), Phys. Rev. Lett. 92, 032001 (2004); A. Airapetian et al. (HERMES Collab.), Phys. Lett. B 585, 213 (2004); R. Togoo et al., Proc. Mongolian Acad. Sci. 4, 2 (2003); A. Aleev et al. (SVD Collab.), submitted to Yad. Fiz.; hep-ex/0401024; M. Abdel-Bary et al. (COSY-TOF Collab.), hep-ex/0403011; S. Chekanov et al. (ZEUS Collab.), Phys. Lett. B 591, 7 (2004); hep-ex/0403051; M. Barbi (for ZEUS and H1 Collab.), hep-ex/0407006.

  3. M. Karliner and H. J. Lipkin, hep-ph/0307243; Phys. Lett. B 575, 249 (2003); hep-ph/0307343; hep-ph/0401072.

    ADS  Google Scholar 

  4. R. Jaffe and F. Wilczek, hep-ph/0307341; Phys. Rev. Lett. 91, 232003 (2003); hep-ph/0312369.

    Google Scholar 

  5. F. Close, Summary Talk at the Baryon03 Conference; hep-ph/0311087; AIP Conf. Proc. 717, 919 (2004); hep-ph/0411396.

  6. J. J. Dudek and F. E. Close, hep-ph/0311258; F. E. Close and J. J. Dudek, hep-ph/0401192.

  7. K. Maltman, hep-ph/0408144; hep-ph/0412328.

  8. J. Ping, D. Qing, F. Wang, and T. Goldman, hep-ph/0408176.

  9. C. Alt et al. (NA49 Collab.), Phys. Rev. Lett. 92, 042003 (2004); hep-ex/0310014.

    Google Scholar 

  10. H. G. Fischer and S. Wenig, hep-ex/0401014; Eur. Phys. J. C 37, 133 (2004).

    Article  ADS  Google Scholar 

  11. A. Aktas et al. (H1 Collab.), Phys. Lett. B 588, 17 (2004); hep-ex/0403017.

    ADS  Google Scholar 

  12. M. I. Adamovich et al. (WA89 Collab.), hep-ex/0405042; U. Karshon (for ZEUS Collab.), hep-ex/0407004; I. Abt (for the HERA-B Collab.), hep-ex/0408048; B. Aubert (for the BABAR Collab.), hep-ex/0408064.

  13. J. Pochodzalla, hep-ex/0406077.

  14. V. D. Burkert, R. De Vita, S. Niccolai, and the CLAS Collab., nucl-ex/0408019; K. Hicks, hep-ph/0408001; hep-ex/0412048; V. D. Burkert, nucl-ex/0412033.

  15. R. L. Jaffe, Talk at the Topical Conference on Baryon Resonances (Oxford, England, 1976), SLAC-PUB-1774; Phys. Rev. D 15, 281 (1977).

    Google Scholar 

  16. H. Hogaasen and P. Sorba, Nucl. Phys. B 145, 119 (1978); D. Strottman, Phys. Rev. D 20, 748 (1979).

    ADS  Google Scholar 

  17. C. Roiesnel, Phys. Rev. D 20, 1646 (1979).

    Article  ADS  Google Scholar 

  18. A. V. Manohar, Nucl. Phys. B 248, 19 (1984); M. Chemtob, Nucl. Phys. B 256, 600 (1985).

    Article  ADS  Google Scholar 

  19. M. Karliner and M. P. Mattis, Phys. Rev. D 34, 1991 (1986).

    Article  ADS  Google Scholar 

  20. L. C. Biedenharn and Y. Dothan, in From SU(3) to Gravity (Ne’eman Festschrift) (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  21. M. Praszalowicz, Talk at the Cracow Workshop on Skyrmions and Anomalies (Mogilany, Poland, 1987).

    Google Scholar 

  22. V. B. Kopeliovich, NORDITA Preprint 90/55 NP (1990); Phys. Lett. B 259, 234 (1991).

    Google Scholar 

  23. H. Walliser, Nucl. Phys. A 548, 649 (1992); in Proceedings of the Workshop on Baryons as Skyrme Solitons, Seigen, Germany, 1992, Ed. by G. Holzwarth (World Sci., Singapore, 1992), p. 247.

    ADS  Google Scholar 

  24. D. Diakonov, V. Petrov, and M. Polyakov, Z. Phys. A 359, 305 (1997).

    Article  Google Scholar 

  25. H. Weigel, Eur. Phys. J. A 2, 391 (1998).

    Article  ADS  Google Scholar 

  26. R. L. Jaffe, hep-ph/0401187, v2; hep-ph/0405268.

  27. V. B. Kopeliovich, B. Schwesinger, and B. E. Stern, Nucl. Phys. A 549, 485 (1992).

    ADS  Google Scholar 

  28. D. Diakonov, V. Petrov, and M. Polyakov, hep-ph/0404212.

  29. T. Cohen, Phys. Lett. B 581, 175 (2004); hep-ph/0309111.

    ADS  Google Scholar 

  30. N. Itzhaki, I. R. Klebanov, P. Ouyang, and L. Rastelli, Nucl. Phys. B 684, 264 (2004); I. Klebanov and P. Ouyang, hep-ph/0408251.

    Article  ADS  Google Scholar 

  31. H. Walliser and V. B. Kopeliovich, Zh. Éksp. Teor. Fiz. 124, 483 (2003) [JETP 97, 433 (2003)]; hep-ph/0304058.

    Google Scholar 

  32. D. Borisyuk, M. Faber, and A. Kobushkin, hep-ph/0307370; Ukr. Phys. J. 49, 944 (2004).

    Google Scholar 

  33. M. Praszalowicz, Phys. Lett. B 575, 234 (2003); hep-ph/0308114.

    ADS  Google Scholar 

  34. B. Wu and B.-Q. Ma, hep-ph/0312041; hep-ph/0408121.

  35. J. Ellis, M. Karliner, and M. Praszalowicz, J. High Energy Phys., 0405002 (2004); hep-ph/0401127.

  36. G. Duplancic, H. Pasagic, and J. Trampetic, hep-ph/0404193; hep-ph/0405029; J. High Energy Phys., 0407027 (2004); B. J. Park, M. Rho, and D. P. Min, hep-ph/0405246; H. K. Lee and H. Y. Park, hep-ph/0406051.

  37. H. Weigel, Eur. Phys. J. A 21, 133 (2004); hep-ph/0404173; hep-ph/0405285.

    Article  ADS  Google Scholar 

  38. B. K. Jennings and K. Maltman, Phys. Rev. D 69, 094020 (2004); V. B. Kopeliovich, Usp. Fiz. Nauk 174, 323 (2004) [Phys. Usp. 47, 309 (2004)]; D. Diakonov, hep-ph/0406043; S. L. Zhu, hep-ph/0406204; M. Oka, hep-ph/0406211; Ya. I. Azimov and I. I. Strakovsky, hep-ph/0406312.

  39. H. J. Lipkin, Phys. Lett. B 195, 484 (1987).

    ADS  Google Scholar 

  40. D. O. Riska and N. N. Scoccola, Phys. Lett. B 299, 338 (1993).

    ADS  Google Scholar 

  41. Y. Oh, B. Y. Park, and D. P. Min, Phys. Lett. B 331, 362 (1994); Phys. Rev. D 50, 3350 (1994).

    ADS  Google Scholar 

  42. V. B. Kopeliovich and M. S. Sriram, Phys. At. Nucl. 63, 480 (2000); hep-ph/9809394.

    Article  Google Scholar 

  43. V. B. Kopeliovich and W. J. Zakrzewski, Eur. Phys. J. C 18, 369 (2000); Pis’ma Zh. Éksp. Teor. Fiz. 69, 675 (1999) [JETP Lett. 69, 721 (1999)]; hep-ph/9904386.

    ADS  Google Scholar 

  44. K. M. Westerberg and I. R. Klebanov, Phys. Rev. D 50, 5834 (1994); 53, 2804 (1996).

    Article  ADS  Google Scholar 

  45. C. G. Callan and I. R. Klebanov, Nucl. Phys. B 262, 365 (1985); N. Scoccola, H. Nadeau, M. Nowak, and M. Rho, Phys. Lett. B 201, 425 (1988).

    ADS  Google Scholar 

  46. C. J. Houghton, N. S. Manton, and P. M. Sutcliffe, Nucl. Phys. B 510, 507 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  47. V. Kopeliovich, B. Schwesinger, and B. Stern, Pis’ma Zh. Éksp. Teor. Fiz. 62, 477 (1995) [JETP Lett. 62, 185 (1995)].

    Google Scholar 

  48. V. Kopeliovich, hep-ph/0310071; in Proceedings of the Conference on Electroproduction of Strangeness on Nucleons and Nuclei, Sendai, Japan, 2003, Ed. by K. Maeda, H. Tamura, S. N. Nakamura, and O. Hasimoto (World Sci., Singapore, 2004), p. 96.

    Google Scholar 

  49. K. Cheung, hep-ph/0308176; B. Wu and B.-Q. Ma, Phys. Rev. D 70, 034025 (2004).

  50. P.-Z. Huang et al., hep-ph/0401191; I. Stewart, M. Wessling, and M. Wise, hep-ph/0402076.

  51. P. Bicudo, hep-ph/0403295; P. Bicudo and G. M. Marques, Phys. Rev. D 69, 011503(R) (2004).

  52. S. Sasaki, Phys. Rev. Lett. 93, 152001 (2004); T.-W. Chiu and T.-H. Hsieh, hep-ph/0404007; H. Kim and S. H. Lee, hep-ph/0404170.

  53. K. Maltman, hep-ph/0408145; hep-ph/0412327.

  54. G. A. Miller, nucl-th/0402099; Phys. Rev. C 70, 022202(R) (2004).

  55. T. H. R. Skyrme, Proc. R. Soc. London, Ser. A 260, 127 (1961); Nucl. Phys. 31, 556 (1962).

    ADS  MATH  MathSciNet  Google Scholar 

  56. E. Witten, Nucl. Phys. B 223, 422 (1983); 223, 433 (1983).

    ADS  MathSciNet  Google Scholar 

  57. A. Jackson et al., Phys. Lett. B 154, 101 (1985); A. Jackson, A. D. Jackson, and V. Pasquier, Nucl. Phys. A 432, 567 (1985).

    ADS  Google Scholar 

  58. L. Marleau, Phys. Lett. B 235, 141 (1990); Phys. Lett. B 244, 580(E) (1990); Phys. Rev. D 45, 1776 (1992); L. Marleau and J.-F. Rivard, Phys. Rev. D 63, 036007 (2001).

    ADS  Google Scholar 

  59. I. Floratos and B. M. A. G. Piette, Phys. Rev. D 64, 045009 (2001); J. Math. Phys. 42, 5580 (2001).

    Google Scholar 

  60. B. Schwesinger and H. Weigel, Phys. Lett. B 267, 438 (1991); H. Weigel, Int. J. Mod. Phys. A 11, 2419 (1996).

    ADS  Google Scholar 

  61. E. Guadagnini, Nucl. Phys. B 236, 35 (1984).

    Article  ADS  Google Scholar 

  62. R. A. Battye and P. M. Sutcliffe, Rev. Math. Phys. 14, 29 (2002).

    Article  MathSciNet  Google Scholar 

  63. V. B. Kopeliovich, Zh. Éksp. Teor. Fiz. 120, 499 (2001) [JETP 93, 435 (2001)]; J. Phys. G 28, 103 (2002); Pis’ma Zh. Éksp. Teor. Fiz. 73, 667 (2001) [JETP Lett. 73, 587 (2001)].

    Google Scholar 

  64. A. M. Shunderuk, Yad. Fiz. 67, 769 (2004) [Phys. At. Nucl. 67, 748 (2004)].

    Google Scholar 

  65. V. B. Kopeliovich, A. M. Shunderuk, and G. K. Matushko, nucl-th/0404020; submitted to Yad. Fiz. (2005).

  66. V. B. Kopeliovich, Zh. Éksp. Teor. Fiz. 123, 891 (2003) [JETP 96, 782 (2003)].

    Google Scholar 

  67. S. Nussinov, hep-ph/0307357; R. A. Arndt, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 68, 042201(R) (2003); R. L. Workman et al., nucl-th/0410110; W. R. Gibbs, nucl-th/0405024.

  68. M. Praszalowicz, Phys. Lett. B 583, 96 (2004); hep-ph/0311230.

    ADS  Google Scholar 

  69. B. L. Ioffe and A. G. Oganesian, Pis’ma Zh. Éksp. Teor. Fiz. 80, 439 (2004) [JETP Lett. 80, 386 (2004)]; hep-ph/0408152.

    Google Scholar 

  70. E. Jenkins and A. Manohar, hep-ph/0402024; Phys. Rev. D 70, 034023 (2004).

  71. D. Cabrera, Q. B. Li, V. K. Magas, et al., nucl-th/0407007.

  72. X. H. Zhong, Y. N. Tan, L. Li, and P. Z. Ning, nucl-th/0408046.

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 5, 2005, pp. 1055–1074.

Original English Text Copyright © 2005 by Kopeliovich, Shunderuk.

This article was submitted by authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopeliovich, V.B., Shunderuk, A.M. Flavored exotic multibaryons and hypernuclei in topological soliton models. J. Exp. Theor. Phys. 100, 929–948 (2005). https://doi.org/10.1134/1.1947317

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1947317

Keywords

Navigation