Skip to main content
Log in

Auxiliary-level-assisted operations with charge qubits in semiconductors

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor atoms in a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. [16] are defined by the lowest two energy states of the remaining valence electron localized around one or another donor. We show that an electron located initially at one donor site can be transferred to another donor site via an auxiliary molecular level formed upon the hybridization of the excited states of two donors. The electron transfer is driven by a single resonant microwave pulse in the case where the energies of the lowest donor states coincide or by two resonant pulses in the case where they differ from each other. Depending on the pulse parameters, various one-qubit operations—including the phase gate, the NOT gate, and the Hadamard gate—can be realized in short times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown to be weak enough for coherent qubit manipulation to be possible, at least in proof-of-principle experiments on one-qubit devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).

    Article  ADS  Google Scholar 

  2. A. Shnirman, G. Schon, and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).

    Article  ADS  Google Scholar 

  3. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Article  ADS  Google Scholar 

  4. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

    Article  ADS  Google Scholar 

  5. Yu. A. Pashkin, T. Yamamoto, O. Astafiev, et al., Nature 421, 823 (2003).

    Article  ADS  Google Scholar 

  6. B. E. Kane, Nature 393, 133 (1998).

    Article  ADS  Google Scholar 

  7. B. E. Kane, N. S. McAlpine, A. S. Dzurak, et al., Phys. Rev. B 61, 2961 (2000).

    Article  ADS  Google Scholar 

  8. R. Vrijen, E. Yablonovitch, K. Wang, et al., Phys. Rev. A 62, 012306 (2000).

  9. L. A. Openov, Phys. Rev. B 60, 8798 (1999).

    Article  ADS  Google Scholar 

  10. L. Fedichkin, M. Yanchenko, and K. A. Valiev, Nanotechnology 11, 387 (2000).

    Article  ADS  Google Scholar 

  11. T. Tanamoto, Phys. Rev. A 61, 022305 (2000).

    Google Scholar 

  12. J. H. Oh, D. Ahn, and S. W. Hwang, Phys. Rev. A 62, 052306 (2000).

  13. T. Hayashi, T. Fujisawa, H. D. Cheong, et al., Phys. Rev. Lett. 91, 226804 (2003).

    Google Scholar 

  14. L. Fedichkin and A. Fedorov, Phys. Rev. A 69, 032311 (2004).

    Google Scholar 

  15. J. R. Petta, A. C. Johnson, C. M. Marcus, et al., cond-mat/0408139.

  16. L. C. L. Hollenberg, A. S. Dzurak, C. Wellard, et al., Phys. Rev. B 69, 113301 (2004).

    Google Scholar 

  17. A. V. Tsukanov and L. A. Openov, Fiz. Tekh. Poluprovodn (St. Petersburg) 38, 94 (2004) [Semiconductors 38, 91 (2004)].

    Google Scholar 

  18. D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990).

    Article  ADS  Google Scholar 

  19. S. R. Schofield, N. J. Curson, M. Y. Simmons, et al., Phys. Rev. Lett. 91, 136104 (2003).

    Google Scholar 

  20. A. S. Dzurak, L. C. L. Hollenberg, D. N. Jamieson, et al., cond-mat/0306265.

  21. D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).

    Article  ADS  MATH  Google Scholar 

  22. L. A. Openov and A. V. Tsukanov, Pis’ma Zh. Éksp. Teor. Fiz. 80, 572 (2004) [JETP Lett. 80, 503 (2004)]; L. A. Openov, Phys. Rev. B 70, 233313 (2004).

    Google Scholar 

  23. L. M. Kettle, H.-S. Goan, S. C. Smith, et al., Phys. Rev. B 68, 075317 (2003).

  24. R. L. Aggarwal, Solid State Commun. 2, 163 (1964).

    Article  Google Scholar 

  25. A. Baldereschi, Phys. Rev. B 1, 4673 (1970).

    Article  ADS  Google Scholar 

  26. S. D. Barrett and G. J. Milburn, Phys. Rev. B 68, 155307 (2003).

    Google Scholar 

  27. S. T. Pantelides and C. T. Sah, Phys. Rev. B 10, 621 (1974).

    ADS  Google Scholar 

  28. D. R. Bates and R. H. G. Reid, Adv. At. Mol. Phys. 4, 13 (1968).

    Google Scholar 

  29. N. Bardsley, T. Holstein, B. R. Junker, and S. Sinha, Phys. Rev. A 11, 1911 (1975).

    Article  ADS  Google Scholar 

  30. T. C. Scott, A. Dalgarno, and J. D. Morgan III, Phys. Rev. Lett. 67, 1419 (1991).

    Article  ADS  Google Scholar 

  31. S. Fujinaga, Method of Molecular Orbitals (Iwanami Shoten, Tokyo, 1980; Mir, Moscow, 1983) [translated from Japanese to Russian].

    Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Nauka, Moscow, 1974; Pergamon, New York, 1977), Chap. 6.

    Google Scholar 

  33. U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990).

    Article  ADS  Google Scholar 

  34. T. Brandes and T. Vorrath, Phys. Rev. B 66, 075341 (2002).

    Google Scholar 

  35. N. G. van Kampen, J. Stat. Phys. 78, 299 (1995).

    Article  MATH  Google Scholar 

  36. D. Mozyrsky and V. Privman, J. Stat. Phys. 91, 787 (1998).

    Article  MathSciNet  Google Scholar 

  37. F.-S. Liu, K.-D. Peng, and W.-F. Chen, Int. J. Theor. Phys. 40, 2037 (2001).

    Article  Google Scholar 

  38. L. A. Openov, Phys. Rev. Lett. 93, 158901 (2004).

    Google Scholar 

  39. E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, Phys. Rev. B 69, 155316 (2004).

    Google Scholar 

  40. Z. Kis and E. Paspalakis, Phys. Rev. B 69, 024510 (2004).

  41. C.-P. Yang, S.-I. Chu, and S. Han, Phys. Rev. A 67, 042311 (2003).

  42. M. H. S. Amin, A. Yu. Smirnov, and A. M. van den Brink, Phys. Rev. B 67, 100508 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 5, 2005, pp. 973–983.

Original English Text Copyright © 2005 by Openov.

This article was submitted by author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Openov, L.A. Auxiliary-level-assisted operations with charge qubits in semiconductors. J. Exp. Theor. Phys. 100, 857–866 (2005). https://doi.org/10.1134/1.1947310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1947310

Keywords

Navigation