Skip to main content
Log in

A superpowerful source of far-ultraviolet monochromatic radiation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In several independent experiments investigating the interaction between the optical field of an intense laser pulse and a xenon cluster beam, we recorded an anomalously high quantum yield of the plasma radiation in the region 10–15 nm. In several cases, the conversion efficiency into the hemisphere reached 10% of the pumping pulse energy. The nature of this phenomenon has not yet been adequately explained. A high conversion efficiency is shown to be possible when producing a plasma with optimal parameters for the amplification of spontaneous radiation on Ni-like xenon transitions to be generated. In a collisional-radiative model, we performed detailed atomic-kinetic calculations of the gains and radiation spectra on the transitions with λ ≈ 4, 10, and 11.3 nm and in the region 13–13.9 nm. For each transition, we determined the time dependences of the gains on plasma parameters. The theoretical and experimental values of the optimal plasma parameters and energy yields of the radiation are in close agreement. Using a theoretical model, we propose possible plasma pumping schemes to achieve the maximum yield of the intense, narrowly beamed soft X-ray radiation. At a pumping pulse repetition rate of 104 Hz, the output power for various Ni-like xenon transitions ranges from 100 to 5 × 103 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ditmire, T. Donelly, A. M. Rubenchik, et al., Phys. Rev. A 53, 3379 (1996).

    Article  ADS  Google Scholar 

  2. A. McPherson, B. J. Thompson, A. B. Borisov, et al., Nature 370, 631 (1994).

    Article  ADS  Google Scholar 

  3. T. Ditmire, J. W. G. Tisoh, E. Springate, et al., Nature 386, 54 (1997).

    Article  Google Scholar 

  4. M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, Phys. Rev. Lett. 80, 261 (1998).

    Article  ADS  Google Scholar 

  5. M. A. Lebeault, J. Viallon, J. Chevaleyre, et al., Eur. Phys. J. D 20, 233 (2002).

    Article  ADS  Google Scholar 

  6. J. Zweiback, T. Ditmire, and M. D. Perry, Phys. Rev. A 59, R3166 (1999).

  7. V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).

    Article  ADS  Google Scholar 

  8. O. F. Hagena and W. Obert, J. Chem. Phys. 56, 1793 (1972).

    Article  Google Scholar 

  9. J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet, J. Chem. Phys. 84, 3491 (1986).

    Article  ADS  Google Scholar 

  10. S. Dobosz, M. Lezius, M. Schmidt, et al., Phys. Rev. A 56, R2526 (1997).

  11. L. Köller, M. Schumacher, J. Köhn, et al., Phys. Rev. Lett. 82, 3783 (1999).

    Article  ADS  Google Scholar 

  12. E. Springate, N. Hay, J. W. G. Tisch, et al., Phys. Rev. A 61, 063201 (2000).

  13. T. Ditmire, T. Donnelly, R. W. Falcone, and M. D. Peny, Phys. Rev. Lett. 75, 3122 (1995).

    Article  ADS  Google Scholar 

  14. T. Auguste, P. D’Oliveira, S. Hulin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 72, 54 (2000) [JETP Lett. 72, 38 (2000)].

    Google Scholar 

  15. A. S. Boldarev, V. A. Gasilov, F. Blasko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 73, 583 (2001) [JETP Lett. 73, 514 (2001)].

    Google Scholar 

  16. V. P. Krainov and M. B. Smirnov, Phys. Rep. 370, 237 (2002).

    Article  ADS  Google Scholar 

  17. V. P. Krainov and M. B. Smirnov, Zh. Éksp. Teor. Fiz. 121, 867 (2002) [JETP 94, 745 (2002)].

    Google Scholar 

  18. M. B. Smirnov and V. P. Krainov, Phys. Plasmas 10, 443 (2003).

    Article  ADS  Google Scholar 

  19. H. Honda, E. Miura, K. Katsura, et al., Phys. Rev. A 61, 023201 (2000).

  20. M. Mori, T. Shiraishi, E. Takahashi, et al., J. Appl. Phys. 90, 3595 (2001).

    ADS  Google Scholar 

  21. S. Ter-Avetisyan, M. Schnürer, H. Stiel, et al., Phys. Rev. E 64, 036404 (2001).

  22. S. Ter-Avetisyan, U. Vogt, H. Stiel, et al., J. Appl. Phys. 94, 5489 (2003).

    Article  ADS  Google Scholar 

  23. E. P. Ivanova, N. A. Zinov’ev, and L. V. Knight, Kvantovaya Élektron. (Moscow) 31, 683 (2001).

    Article  Google Scholar 

  24. E. P. Ivanova and N. A. Zinov’ev, Kvantovaya Élektron. (Moscow) 27, 207 (1999).

    Google Scholar 

  25. E. P. Ivanova and N. A. Zinoviev, Phys. Lett. A 274, 239 (2000).

    Article  ADS  Google Scholar 

  26. E. P. Ivanova and A. L. Ivanov, Quantum Electron. (Moscow) 34, 1013 (2004).

    Google Scholar 

  27. A. L. Gogava and E. P. Ivanova, Opt. Spektrosk. 59, 1310 (1985) [Opt. Spectrosc. 59, 785 (1985)].

    Google Scholar 

  28. E. P. Ivanova and A. V. Gulov, At. Data Nucl. Data Tables 49, 1 (1991).

    Article  ADS  Google Scholar 

  29. J. H. Scofield and B. J. MacGowan, Phys. Scr. 46, 361 (1992).

    ADS  Google Scholar 

  30. G. D. Enright, D. M. Villeneuve, J. Dunn, et al., J. Opt. Soc. Am. B 8, 2047 (1991).

    ADS  Google Scholar 

  31. S. B. Healy, K. A. Janulewiez, and G. J. Pert, Opt. Commun. 144, 24 (1997).

    Article  ADS  Google Scholar 

  32. V. I. Derzhiev, A. G. Zhidkov, and S. I. Yakovlenko, Emission of Ions in a Nonequilibrium Dense Plasma (Énergoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  33. E. Fill, J. Quant. Spectrosc. Radiat. Transf. 39, 489 (1988).

    Article  Google Scholar 

  34. A. Klisnick, A. Carrillon, G. Jamelot, et al., Proc. SPIE 3776, 282 (1999).

    ADS  Google Scholar 

  35. A. N. Ryabtsev and S. S. Churilov, in Spectroscopy of Multi-Charge Ions (Nauka, Moscow, 1991), p. 76 [in Russian].

    Google Scholar 

  36. C. Chenais-Popovics, V. Malka, J.-C. Gathier, et al., Phys. Rev. E 65, 046418 (2002).

    Google Scholar 

  37. K. Boyer, B. D. Thompson, A. McPherson, and C. K. Rhodes, J. Phys. B: At. Mol. Opt. Phys. 27, 4373 (1994).

    Article  ADS  Google Scholar 

  38. T. Ditmire, P. K. Patel, R. A. Smith, et al., J. Phys. B: At. Mol. Opt. Phys. 31, 2825 (1998); T. Ditmire, R. A. Smith, R. S. Marjoribanks, et al., Appl. Phys. Lett. 71, 166 (1997).

    Article  ADS  Google Scholar 

  39. K. J. Whitney, A. Dasgupta, and P. E. Pulsifer, Phys. Rev. E 50, 468 (1994).

    ADS  Google Scholar 

  40. D. Benredjem, A. Sureau, and C. Möller, Inst. Phys. Conf. Ser., No. 151, 333 (1996).

  41. B. E. Lemoff, C. P. J. Barty, and S. E. Harris, Opt. Lett. 19, 569 (1994).

    ADS  Google Scholar 

  42. L. N. Ivanov, E. P. Ivanova, and L. V. Knight, Phys. Lett. A 206, 89 (1995).

    Article  ADS  Google Scholar 

  43. L. N. Ivanov, E. P. Ivanova, and L. V. Knight, Phys. Rev. A 48, 4365 (1993).

    ADS  Google Scholar 

  44. E. P. Ivanova and I. P. Grant, J. Phys. B: At. Mol. Opt. Phys. 31, 2871 (1998).

    Article  ADS  Google Scholar 

  45. L. N. Ivanov, E. P. Ivanova, L. V. Knight, and A. G. Molchanov, Phys. Scr. 53, 653 (1996).

    ADS  Google Scholar 

  46. Y. Abou-Ali, A. Demir, G. F. Tallent, et al., J. Phys. B: At. Mol. Opt. Phys. 36, 4097 (2003).

    Article  ADS  Google Scholar 

  47. C. Jupen, U. Litzen, and E. Träbert, Phys. Lett. A 214, 273 (1996).

    Article  ADS  Google Scholar 

  48. E. P. Ivanova and A. V. Glushkov, J. Quant. Spectrosc. Radiat. Transf. 36, 127 (1986).

    Article  ADS  Google Scholar 

  49. E. P. Ivanova, A. L. Ivanov, N. A. Zinoviev, and L. V. Knight, Proc. SPIE 3735, 266 (1999).

    ADS  Google Scholar 

  50. E. P. Ivanova and N. A. Zinoviev, J. Phys. IV 11, 152 (2001).

    Google Scholar 

  51. E. P. Ivanova, AIP Conf. Proc. 641, 247 (2002).

    ADS  Google Scholar 

  52. I. A. Belov, A. S. Ivanov, D. A. Ivanov, et al., Pis’ma Zh. Tekh. Fiz. 25(15), 89 (1999) [Tech. Phys. Lett. 25, 630 (1999)].

    Google Scholar 

  53. A. G. Leonov, A. F. Pal’, A. N. Starostin, and A. V. Filippov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 577 (2003) [JETP Lett. 77, 482 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 5, 2005, pp. 957–972.

Original Russian Text Copyright © 2005 by Ivanova, Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, E.P., Ivanov, A.L. A superpowerful source of far-ultraviolet monochromatic radiation. J. Exp. Theor. Phys. 100, 844–856 (2005). https://doi.org/10.1134/1.1947309

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1947309

Keywords

Navigation