Advertisement

Physics of the Solid State

, Volume 47, Issue 6, pp 1169–1171 | Cite as

Effect of high magnetic fields on the conductivity of a quantum cylinder under Stark ladder conditions

  • D. V. Zav’yalov
  • S. V. Kryuchkov
  • N. E. Meshcheryakova
Low-Dimensional Systems and Surface Physics

Abstract

The conductivity of a quantum cylinder with a parabolic lateral confinement potential and a superstructure is studied under conditions where uniform static quantizing electric and magnetic fields are applied along the cylinder axis. The charge carriers are assumed to be scattered by optical phonons. The dependence of the current density along the superlattice axis on the dc magnetic field is obtained. It is shown that, under certain conditions, the so-called Stark-hybrid-phonon resonance appears due to the hybridization of the electronic energy spectrum. In turn, this gives rise to a sharply nonmonotonic magnetic-field dependence of the current density.

Keywords

Spectroscopy Magnetic Field State Physics Charge Carrier Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Ya. Prinz, V. A. Seleznev, V. A. Samoylov, and A. K. Gutakovsky, Microelectron. Eng. 30, 439 (1996).CrossRefGoogle Scholar
  2. 2.
    V. A. Geiler, V. A. Margulis, and A. V. Shorokhov, Zh.Éksp. Teor. Fiz. 115, 1478 (1999) [JETP 88, 800 (1999)].Google Scholar
  3. 3.
    N. G. Galkin, V. A. Margulis, and A. V. Shorokhov, Fiz. Tverd. Tela (St. Petersburg) 43(3), 511 (2001) [Phys. Solid State 43 (3), 530 (2001)].Google Scholar
  4. 4.
    É. P. Sinyavskii and S. M. Sokovnich, Fiz. Tverd. Tela (St. Petersburg) 42(9), 1685 (2000) [Phys. Solid State 42 (9), 1734 (2000)].Google Scholar
  5. 5.
    V. A. Margulis, Zh. Éksp. Teor. Fiz. 111, 1092 (1997) [JETP 84 (3), 603 (1997)].Google Scholar
  6. 6.
    J. Callaway, Energy Band Theory (Academic, New York, 1964; Mir, Moscow, 1969).Google Scholar
  7. 7.
    V. V. Bryskin and Yu. A. Firsov, Zh. Éksp. Teor. Fiz. 61(6), 2373 (1971) [Sov. Phys. JETP 61, 1272 (1971)].Google Scholar
  8. 8.
    S. V. Kryuchkov and N. P. Mikheev, Fiz. Tekh. Poluprovodn. (Leningrad) 15(11), 2277 (1981) [Sov. Phys. Semicond. 15, 1323 (1981)].Google Scholar
  9. 9.
    V. M. Polyanovskii, Fiz. Tekh. Poluprovodn. (Leningrad) 15(10), 2051 (1981) [Sov. Phys. Semicond. 15 (10), 1190 (1981)].Google Scholar
  10. 10.
    S. V. Kryuchkov, Fiz. Tverd. Tela (Leningrad) 21(5), 1595 (1979) [Sov. Phys. Solid State 21 (5), 921 (1979)].Google Scholar
  11. 11.
    L. Solymar, Superconductive Tunnelling and Applications (Chapman and Hall, London, 1972; Mir, Moscow, 1974).Google Scholar
  12. 12.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989) [in Russian].Google Scholar
  13. 13.
    K. Seeger, Semiconductor Physics (Springer, Berlin, 1974; Mir, Moscow, 1977).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • D. V. Zav’yalov
    • 1
  • S. V. Kryuchkov
    • 1
  • N. E. Meshcheryakova
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations