Skip to main content
Log in

Cosmological model with dynamical cancellation of vacuum energy and dark energy

  • On the 70th Anniversary of Yurii Antonovich Simonov
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We propose a model with a compensating scalar field whose back reaction to the cosmological curvature cancels possible vacuum energy density down to the terms of the order of the time-dependent critical energy density. Thus, the model simultaneously solves the mystery of the compensation of vacuum energy with an accuracy of 120 orders of magnitude and explains the existence of the observed dark energy. At an early stage, the suggested cosmological model might experience exponential expansion without an additional inflaton field. However, the solution found is unstable with respect to small perturbations. The stability can be ensured by introducing nonanalytical terms depending upon the absolute value of the curvature scalar R. Unfortunately, stable solutions do not describe realistic cosmology at the matter-dominated stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. B. Zeldovich, Pis’ma Zh. Éksp. Teor. Fiz. 6, 833 (1967) [JETP Lett. 6, 316 (1967)]; Usp. Fiz. Nauk 95, 209 (1968) [Sov. Phys. Usp. 11, 381 (1969)].

    Google Scholar 

  2. A. D. Dolgov, in The Very Early Universe, Ed. by G. Gibbons, S. W. Hawking, and S. T. Tiklos (Cambridge Univ. Press, Cambridge, 1982), p. 449.

    Google Scholar 

  3. A. G. Riess et al. (Supernova Search Team Collab.), Astron. J. 116, 1009 (1998); S. Perlmutter et al. (Supernova Cosmology Project Collab.), Astrophys. J. 517, 565 (1999); J. L. Tonry et al., astro-ph/0305008.

    Article  ADS  Google Scholar 

  4. A. T. Lee et al., Astrophys. J. 561, L1 (2001); C. B. Netterfield et al., Astrophys. J. 571, 604 (2002); N. W. Halverson et al., Astrophys. J. 568, 38 (2002); D. N. Spergel et al., astro-ph/0302209.

  5. A. D. Dolgov, Pis’ma Zh. Éksp. Teor. Fiz. 41, 280 (1985) [JETP Lett. 41, 345 (1985)].

    Google Scholar 

  6. R. D. Peccei, J. Sola, and C. Wetterich, Phys. Lett. B 195, 18 (1987).

    Google Scholar 

  7. L. H. Ford, Phys. Rev. D 35, 2339 (1987).

    ADS  Google Scholar 

  8. S. M. Barr and D. Hochberg, Phys. Lett. B 211, 49 (1988).

    ADS  Google Scholar 

  9. Y. Fujii and T. Nishioka, Phys. Rev. D 42, 361 (1990); Phys. Lett. B 254, 347 (1991), and references therein.

    Article  ADS  Google Scholar 

  10. A. D. Dolgov, Yukawa Int. Preprint YITP/K-924 (1991) (unpublished).

  11. A. D. Dolgov, Phys. Rev. D 55, 5881 (1997).

    Article  ADS  Google Scholar 

  12. V. A. Rubakov, Phys. Rev. D 61, 061501 (2000).

    Google Scholar 

  13. A. Hebecker and C. Wetterich, Phys. Rev. Lett. 85, 3339 (2000).

    Article  ADS  Google Scholar 

  14. S. Mukohyama and L. Randall, hep-th/0306108.

  15. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989); A. D. Dolgov, in Proceedings of the XXIV Rencontre de Moriond; Series: Moriond Astrophysics Meetings, Ed. by J. Adouse and J. Tran Thanh Van (Les Arcs, France, 1989), p. 227; astro-ph/9708045; P. Binetruy, Int. J. Theor. Phys. 39, 1859 (2000); V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000); A. D. Dolgov, hep-ph/0203245; N. Straumann, astro-ph/0203330; T. Padmanabhan, Phys. Rep. 380, 235 (2003); J. Yokoyama, gr-qc/0305068.

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Mukohyama, hep-th/0306208.

  17. A. D. Dolgov and M. Kawasaki, astro-ph/0307442.

  18. R. R. Caldwell, R. Davis, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  19. A. D. Dolgov and M. Kawasaki, astro-ph/0310822.

  20. L. Parker, Phys. Rev. 183, 1057 (1969); A. A. Grib and S. G. Mamaev, Yad. Fiz. 10, 1276 (1969) [Sov. J. Nucl. Phys. 10, 722 (1969)]; Y. B. Zeldovich, Pis’ma Zh. Éksp. Teor. Fiz. 12, 443 (1970) [JETP Lett. 12, 307 (1970)]; Y. B. Zeldovich and A. A. Starobinsky, Zh. Éksp. Teor. Fiz. 61, 2162 (1971) [Sov. Phys. JETP 34, 1159 (1971)]; N. D. Birrel and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982; Mir, Moscow, 1984); A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory Publ., St. Petersburg, 1994).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 68, No. 5, 2005, pp. 860–864.

Original English Text Copyright © 2005 by Dolgov, Kawasaki.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgov, A.D., Kawasaki, M. Cosmological model with dynamical cancellation of vacuum energy and dark energy. Phys. Atom. Nuclei 68, 828–832 (2005). https://doi.org/10.1134/1.1935015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1935015

Keywords

Navigation