Skip to main content
Log in

Supernovae and properties of matter in the densest and most rarefied states

  • On the 70th Anniversary of Yurii Antonovich Simonov
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An overview of the relationship between the astrophysics of supernovae and fundamental physics is given. It is shown how astronomical observations of supernovae are used to determine the parameters of matter in the most rarefied states (“dark energy”); it is also revealed that the mechanism of supernovae explosion is related to the properties of matter in the densest states. The distinction between thermonuclear and collapsing supernovae is explained. Some problems that arise in the theory of powerful cosmic explositions—supernovae and gamma-ray bursts—and which require new physics for solving them are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Dolgov, in 18th Les Rencontre de Physique de la Valle d’Aosta. La Truile, Aosta Valley, Italy, 2004; hep-ph/0405089.

  2. A. Friedmann, Z. Phys. 10, 377 (1922).

    Google Scholar 

  3. A. Friedmann, Z. Phys. 12, 326 (1924).

    Google Scholar 

  4. W. de Sitter, Mon. Not. R. Astron. Soc. 78, 3 (1917).

    ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1967; Pergamon, Oxford, 1975).

    Google Scholar 

  6. S. Blinnikov, Astrophysics of Exploding Objects. Lecture Notes (Institute for Laser Engineering, Osaka University, 2000).

  7. E. R. Harrison, Astrophy s. J. 403, 28 (1993).

    ADS  Google Scholar 

  8. Ya. B. Zel’dovich and I. D. Novikov, Structure and volution of the Universe (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  9. E. R. Harrison, Cosmology. The Science of the Universe (Cambridge Univ. Press, Cambridge, 1981).

    Google Scholar 

  10. R. Kayser, P. Helbig, and T. Schramm, Astron. Astrophys. 318, 680 (1997).

    ADS  Google Scholar 

  11. T. M. Davis and C. H. Lineweaver, Proc. Astron. Soc. Aust. 21, 97 (2004).

    ADS  Google Scholar 

  12. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972; Mir, Moscow, 1975).

    Google Scholar 

  13. D. W. Hogg, astro-ph/9905116.

  14. S. M. Carroll, gr-qc/9712019.

  15. I. S. Shklovskii, Supernovae and Problems Related to Them (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. V. S. Imshennik and D. K. Nadezhin, Itogi Nauki Tekh., Ser.: Astron. 21, 63 (1982); Usp. Fi z. Nauk 156, 561 (1988) [Sov. Phys. Usp. 31, 461 (1988)].

    Google Scholar 

  17. S. I. Blinnikov, T. A. Lozinskaya, and N. N. Chugai, Itogi Nauki Tekh., Ser.: Astron. 32, 142 (1987).

    Google Scholar 

  18. K. A. Postnov, Usp. Fiz. Nauk 169, 545 (1999) [Phys. Usp. 42, 469 (1999)].

    Google Scholar 

  19. S. I. Blinnikov, Surveys High Energ. Phys. 15, 37 (2000).

    Google Scholar 

  20. S. I. Blinnikov and K. A. Postnov, Mon. Not. R. Astron. Soc. 293, L29 (1998).

    Article  ADS  Google Scholar 

  21. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Pis’ma Astron. Zh. 10, 422 (1984) [Sov. Astron. Lett. 10, 177 (1984)].

    ADS  Google Scholar 

  22. Yu. P. Pskovskii, Astron. Zh. 54, 1188 (1977) [Sov. Astron. 21, 675 (1977)].

    ADS  Google Scholar 

  23. O. S. Bartunov and D. Yu. Tsvetkov, Astrophys. Space Sci. 122, 343 (1986).

    Article  ADS  Google Scholar 

  24. M. M. Phillips, Astrophys. J. 413, L105 (1993).

    Article  ADS  Google Scholar 

  25. M. Hamuy, M. M. Phillips, N. B. Suntzeff, et al., Astron. J. 112, 2391 (1996).

    ADS  Google Scholar 

  26. B. P. Schmidt et al., Astrophys. J. 507, 46 (1998); A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  27. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  28. A. G. Riess, L.-G. Strolger, J. Tonry, et al., Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  29. W. D. Arnett, Astrophys. Space Sci. 5, 180 (1969).

    Article  ADS  Google Scholar 

  30. L. N. Ivanova, V. S. Imshennik, and V. M. Chechetkin, Astrophys. Space Sci. 31, 497 (1974).

    Article  ADS  Google Scholar 

  31. K. Nomoto, D. Sugimoto, and S. Neo, Astrophys. Space Sci. 39, L37 (1976).

    Article  ADS  Google Scholar 

  32. J. C. Niemeyer and S. E. Woosley, Astrophys. J. 475, 740 (1997).

    Article  ADS  Google Scholar 

  33. M. Reinecke, W. Hillebrandt, and J. C. Niemeyer, Astron. Astrophys. 386, 936 (2002).

    Article  ADS  Google Scholar 

  34. E. I. Sorokina, S. I. Blinnikov, and O. S. Bartunov, Pis’ma Astron. Zh. 26, 90 (2000) [Astron. Lett. 26, 67 (2000)].

    Google Scholar 

  35. U. Alam, V. Sahni, T. Deep Saini, and A. A. Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003); 354, 275 (2004).

    Article  ADS  Google Scholar 

  36. J. Jonsson, A. Goobar, R. Amanullah, and L. Bergstrom, JCAP 9, 007 (2004).

  37. D. Rapetti, S. W. Allen, and J. Weller, astro-ph/0409574, submitted for publication in Mon. Not. R. Astron. Soc.

  38. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. USA 20, 254 (1934).

    ADS  Google Scholar 

  39. D. K. Nadyozhin, Astrophys. Space Sci. 49, 399 (1977); 51, 283 (1977); 53, 131 (1978).

    Article  ADS  Google Scholar 

  40. V. S. Berezinskii and O. F. Prilutskii, Astron. Astrophys. 175, 309 (1987).

    ADS  Google Scholar 

  41. G. S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1970)].

    ADS  Google Scholar 

  42. G. S. Bisnovatyi-Kogan, Physical Questions of the Stallar Evolution Theory (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  43. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, K. V. Kosmachevskii, and S. G. Moiseenko, Astrophys. 47, 37 (2004); S. G. Moiseenko, G. S. Bisnovatyi-Kogan, and N. V. Ardeljan, in “Supernovae as Cosmological Lighthouses”, Padua, Italy, 2004; astro-ph/0410330.

    ADS  Google Scholar 

  44. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Mon. Not. R. Astron. Soc. 288, 245 (1997).

    ADS  Google Scholar 

  45. V. S. Imshennik, Pis’ma Astron. Zh. 18, 489 (1992) [Sov. Astron. Lett. 18, 194 (1992)]; Space Sci. Rev. 74, 325 (1995).

    ADS  Google Scholar 

  46. H.-T. Janka, M. Ruffert, and T. Eberl, in Nuclei in the Cosmos V (Frontières, Paris, 1999), p. 325; astro-ph/9810057.

    Google Scholar 

  47. H.-Th. Janka, R. Buras, et al., in Proceedings of the 12th Workshop on Nuclear Astrophysics, Ringberg Castle, 2004; astro-ph/0405289; A. Mezzacappa, in “Supernovae as Cosmological Lighthouses”, Padua, 2004; astro-ph/0410085.

  48. H. C. Spruit and E. S. Phinney, astro-ph/9803201; H. C. Spruit, Astron. Astrophys. 349, 189 (1999).

    ADS  Google Scholar 

  49. V. S. Imshennik and O. G. Ryazhskaya, Pis’ma Astron. Zh. 30, 17 (2004) [Astron. Lett. 30, 14 (2004)].

    Google Scholar 

  50. A. G. Aksenov and V. S. Imshennik, Pis’ma Astron. Zh. 20, 32 (1994) [Astron. Lett. 20, 24 (1994)]; A. G. Aksenov, Pis’ma Astron. Zh. 25, 163 (1999) [Astron. Lett. 25, 127 (1999)].

    ADS  Google Scholar 

  51. S. E. Woosley, Astrophys. J. 405, 273 (1993); A. I. MacFadyen and S. E. Woosley, Astrophys. J. 524, 262 (1999).

    Article  ADS  Google Scholar 

  52. S. S. Gershtein, Pis’ma Astron. Zh. 26, 848 (2000) [Astron. Lett. 26, 730 (2000)].

    Google Scholar 

  53. D. N. Schramm and J. R. Wilson, Astrophys. J. 260, 868 (1982).

    Article  ADS  Google Scholar 

  54. Z. Berezhiani and A. Drago, Phys. Lett. B 473, 281 (2000).

    ADS  Google Scholar 

  55. G. G. Raffelt, Phys. Rep. 198, 1 (1990).

    Article  ADS  Google Scholar 

  56. D. D. Ivanenko and D. F. Kurdgelaidze, Astrofiz. 1, 479 (1965); Lett. Nuovo Cimento 2, 13 (1969); A. R. Bodmer, Phys. Rev. D 4, 1601 (1971); E. Witten, Phys. Rev. D 30, 272 (1984).

    Google Scholar 

  57. Z. Berezhiani, I. Bombaci, A. Drago, et al., Nucl. Phys. B (Proc. Suppl.) 113, 268 (2002); Astrophys. J. 586, 1250 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 68, No. 5, 2005, pp. 847–859.

Original Russian Text Copyright © 2005 by Blinnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinnikov, S.I. Supernovae and properties of matter in the densest and most rarefied states. Phys. Atom. Nuclei 68, 814–827 (2005). https://doi.org/10.1134/1.1935014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1935014

Keywords

Navigation