Skip to main content
Log in

Molecular dynamics simulation of premelting effect in AgBr

  • Lattice Dynamics and Phase Transitions
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The effect of premelting in silver bromide crystals has been simulated for the first time. It is shown that at the temperature about 150°C lower than the melting point of silver bromide, a considerable increase in the mobility in the cationic sublattice is observed, whereas the (self-)diffusion coefficient of silver ions attains values exceeding 10−6 cm2/s. The assumption about the superionic nature of conductivity in the region of premelting is confirmed by the break of the long-range order in the cationic subsystem, which, in turn, is confirmed by the comparison of the pair cation-cation correlation functions far from and in the vicinity of the melting point. It is established that the premelting effect correlates with the experimentally observed effect of a considerable increase in ionic conductivity in the vicinity of the melting point. It is shown that the premelting effect in AgBr is similar to the diffuse superionic phase transition in anionic conductors of the MF2 family (M = Ca, Ba, Sr, and Pb).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Lidiard, Ionic Conductivity (Springer, Berlin, 1957; Inostrannaya Literatura, Moscow, 1962), in Handbuch der Physik, Ed. by S. Flugge, p. 246.

    Google Scholar 

  2. K. Aboagye and R. J. Friauf, Phys. Rev. B 11, 1654 (1975).

    Article  ADS  Google Scholar 

  3. P. A. Varotsos and K. Alexopoulus, J. Phys. Chem. Solids 39, 759 (1978).

    Google Scholar 

  4. A. K. Ivanov-Schitz and I. V. Murin, Ionics of Solid State (S.-Peterb. Gos. Univ., St. Petersburg, 2001) [in Russian].

    Google Scholar 

  5. W. Hayes, Contemp. Phys. 27(6), 519 (1986).

    ADS  Google Scholar 

  6. J. P. Hamilton, Adv. Phys. 37, 359 (1988).

    Article  ADS  Google Scholar 

  7. B.-E. Mellander and D. Lazarus, Phys. Rev. B 29(4), 2148 (1984).

    Article  ADS  Google Scholar 

  8. W. Andreoni and M. P. Tosi, Solid State Ionics 11, 49 (1983).

    Article  Google Scholar 

  9. M. A. S. M. Barrera, J. F. Sanz, L. J. Alvarez, and J. A. Odriozola, Phys. Rev. B 58(10), 6057 (1998).

    ADS  Google Scholar 

  10. K. Refson, Moldy Code (Department of Earth Sciences, Univ. of Oxford, UK).

  11. Molecular Dynamics Method in Physical Chemistry, Ed. by Yu. K. Tovbin (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  12. D. W. Heermann, Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1986; Nauka, Moscow, 1990).

    Google Scholar 

  13. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  14. P. D. Mitev, M. Saito, and Y. Waseda, J. Non-Cryst. Solids 312–314, 443 (2002).

    Google Scholar 

  15. C. Tasseven, J. Trullas, O. Alcaraz, et al., J. Chem. Phys. 106(17), 7286 (1997).

    Article  ADS  Google Scholar 

  16. A. K. Ivanov-Schitz, B. Yu. Mazniker, and E. S. Povolotskaya, Kristallografiya 47(1), 125 (2002) [Crystallogr. Rep. 47, 117 (2002)].

    Google Scholar 

  17. A. S. Miller and R. J. Maurer, J. Phys. Chem. Solids 4, 196 (1958).

    Google Scholar 

  18. M. D. Weber and R. J. Friauf, J. Phys. Chem. Solids 30, 407 (1969).

    Google Scholar 

  19. N. L. Peterson, L. W. Barr, and A. D. Le Claire, J. Phys. C: Solid State Phys. 6, 2020 (1973).

    Article  ADS  Google Scholar 

  20. A. P. Batra and L. M. Slifkin, J. Phys. C: Solid State Phys. 9, 947 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kristallografiya, Vol. 50, No. 3, 2005, pp. 498–501.

Original Russian Text Copyright © 2005 by Ivanov-Schitz, Mazo, Povolotskaya, Savvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov-Schitz, A.K., Mazo, G.N., Povolotskaya, E.S. et al. Molecular dynamics simulation of premelting effect in AgBr. Crystallogr. Rep. 50, 452–455 (2005). https://doi.org/10.1134/1.1927607

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1927607

Keywords

Navigation