Skip to main content
Log in

Orientational instability in a nematic liquid crystal in a decaying Poiseuille flow

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of studies of orientational dynamics and instability in an MBBA nematic liquid crystal in a decaying Poiseuille flow are considered. The experiments were made on a wedge cell with a gap width varying in a direction perpendicular to the flow. Confining surfaces ensured homeotropic adhesion of the nematic to the surface. Above a certain critical value of the initial pressure drop, a uniform orientational instability is observed, which corresponds to the emergence of the director from the plane of the flow. The dependence of the critical pressure drop on the local thickness of the liquid crystal layer and on the external destabilizing electric field is determined. Simulation of nematodynamics equations is carried out. The results of theoretical calculations are in qualitative and quantitative agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pieranski and E. Guyon, Phys. Rev. A 9, 404 (1974).

    ADS  Google Scholar 

  2. E. Guyon and P. Pieranski, J. Phys. Colloq. 36, C1-203 (1975).

    Google Scholar 

  3. E. Dubois-Violette and P. Manneville, in Pattern Formation in Liquid Crystals, Ed. by A. Buka and L. Kramer (Springer, New York, 1996), p. 91.

    Google Scholar 

  4. I. Zuniga and F. M. Leslie, J. Non-Newtonian Fluid Mech. 33, 123 (1989).

    Google Scholar 

  5. A. P. Krekhov and L. Kramer, J. Phys. II 4, 677 (1994).

    Article  Google Scholar 

  6. P. Toth, A. P. Krekhov, L. Kramer, and J. Peinke, Europhys. Lett. 51, 48 (2000).

    ADS  Google Scholar 

  7. S. V. Pasechnik, V. A. Tsvetkov, A. V. Torchinskaya, and D. O. Karandashov, Mol. Cryst. Liq. Cryst. 366, 165 (2001).

    Google Scholar 

  8. W. De Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980; Mir, Moscow, 1982).

    Google Scholar 

  9. H. Kneppe and F. Schneider, Mol. Cryst. Liq. Cryst. 65, 23 (1981).

    Google Scholar 

  10. H. Kneppe, F. Schneider, and N. K. Sharma, J. Chem. Phys. 77, 3203 (1982).

    Article  ADS  Google Scholar 

  11. P.-G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  12. A. P. Krekhov and L. Kramer, Phys. Rev. E 53, 4925 (1996).

    Article  ADS  Google Scholar 

  13. W. H. de Jeu, W. A. P. Claassen, and A. M. J. Spruijt, Mol. Cryst. Liq. Cryst. 37, 269 (1976).

    Google Scholar 

  14. T. J. Scheffer and J. Nehring, J. Appl. Phys. 56, 908 (1984).

    Article  ADS  Google Scholar 

  15. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).

    Google Scholar 

  16. S. V. Pasechnik and A. V. Torchinskaya, Mol. Cryst. Liq. Cryst. 331, 341 (1999).

    Google Scholar 

  17. I. Janossy, P. Pieranski, and E. Guyon, J. Phys. (Paris) 37, 110 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 4, 2005, pp. 907–914.

Original Russian Text Copyright © 2005 by Pasechnik, Krekhov, Shmeleva, Nasibullaev, Tsvetkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasechnik, S.V., Krekhov, A.P., Shmeleva, D.V. et al. Orientational instability in a nematic liquid crystal in a decaying Poiseuille flow. J. Exp. Theor. Phys. 100, 804–810 (2005). https://doi.org/10.1134/1.1926441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1926441

Keywords

Navigation