Skip to main content
Log in

Hopping conductivity and Coulomb correlations in 2D arrays of Ge/Si quantum dots

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The temperature and magnetic-field dependences of the conductivity associated with hopping transport of holes over a 2D array of Ge/Si(001) quantum dots with various filling factors are studied experimentally. A transition from the Éfros-Shklovskiĭ law for the temperature dependence of hopping conductivity to the Arrhenius law with an activation energy equal to 1.0–1.2 meV is observed upon a decrease in temperature. The activation energy for the low-temperature conductivity increases with the magnetic field and attains saturation in fields exceeding 4 T. It is found that the magnetoresistance in layers of quantum dots is essentially anisotropic: the conductivity decreases in an increasing magnetic field oriented perpendicularly to a quantum dot layer and increases in a magnetic field whose vector lies in the plane of the sample. The absolute values of magnetoresistance for transverse and longitudinal field orientations differ by two orders of magnitude. The experimental results are interpreted using the model of many-particle correlations of holes localized in quantum dots, which lead to the formation of electron polarons in a 2D disordered system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  2. S. D. Baranovskii, B. I. Shklovskii, and A. L. Éfros, Zh. Éksp. Teor. Fiz. 78, 395 (1980) [Sov. Phys. JETP 51, 199 (1980)].

    Google Scholar 

  3. R. Chicon, M. Ortuño, and M. Pollak, Phys. Rev. B 37, 10520 (1988).

  4. A. V. Dvurechenskii, A. V. Nenashev, and A. I. Yakimov, Nanotechnology 13, 75 (2002).

    Article  ADS  Google Scholar 

  5. A. V. Nenashev, A. V. Dvurechenskii, and A. F. Zinovieva, Phys. Rev. B 67, 205301 (2003).

    Google Scholar 

  6. D. N. Tsigankov and A. L. Efros, Phys. Rev. Lett. 88, 176602 (2002).

    Google Scholar 

  7. V. L. Nguen, B. Z. Spivak, and B. I. Shklovskii, Zh. Éksp. Teor. Fiz. 89, 1770 (1985) [Sov. Phys. JETP 62, 1021 (1985)].

    ADS  Google Scholar 

  8. W. Schirmacher, Phys. Rev. B 41, 2461 (1990).

    Article  ADS  Google Scholar 

  9. V. L. Nguen, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 335 (1984) [Sov. Phys. Semicond. 18, 207 (1984)].

    Google Scholar 

  10. B. I. Shklovskii, Pis’ma Zh. Éksp. Teor. Fiz. 36, 43 (1982) [JETP Lett. 36, 51 (1982)].

    Google Scholar 

  11. V. I. Kozub, S. D. Baranovskii, and I. Shlimak, Solid State Commun. 113, 587 (2000).

    Article  Google Scholar 

  12. Qiu-yi, B. I. Shklovskii, A. Zrenner, et al., Phys. Rev. B 41, 8477 (1990).

    ADS  Google Scholar 

  13. A. N. Aleshin, A. N. Ionov, R. V. Parfen’ev, et al., Fiz. Tverd. Tela (Leningrad) 30, 696 (1988) [Sov. Phys. Solid State 30, 398 (1988)].

    Google Scholar 

  14. P. Dai, Y. Zhang, and M. P. Sarachik, Phys. Rev. Lett. 69, 1804 (1992).

    ADS  Google Scholar 

  15. A. I. Yakimov, T. Wright, C. J. Adkins, and A. V. Dvurechenskii, Phys. Rev. B 51, 16549 (1995).

    Google Scholar 

  16. M. E. Raikh, Solid State Commun. 75, 935 (1990).

    Article  Google Scholar 

  17. M. E. Raikh, J. Czingon, Qiu-yi Ye, et al., Phys. Rev. B 45, 6015 (1992).

    Article  ADS  Google Scholar 

  18. A. G. Zabrodskii and K. N. Zinov’eva, Zh. Éksp. Teor. Fiz. 86, 727 (1984) [Sov. Phys. JETP 59, 425 (1984)].

    Google Scholar 

  19. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and A. A. Bloshkin, Pis’ma Zh. Éksp. Teor. Fiz. 77, 445 (2003) [JETP Lett. 77, 376 (2003)].

    Google Scholar 

  20. A. I. Yakimov, A. V. Dvurechenskii, A. V. Nenashev, and A. I. Nikiforov, Phys. Rev. B 68, 205310 (2003).

    Google Scholar 

  21. Yu. V. Dubrovskii, V. A. Volkov, L. Eaves, et al., in Proceedings of 12th International Symposium on Nanostructures: Physics and Technology (St. Petersburg, 2004), p. 342.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 4, 2005, pp. 817–826.

Original Russian Text Copyright © 2005 by Yakimov, Dvurechenskiĭ, Min’kov, Sherstobitov, Nikiforov, Bloshkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakimov, A.I., Dvurechenskii, A.V., Min’kov, G.M. et al. Hopping conductivity and Coulomb correlations in 2D arrays of Ge/Si quantum dots. J. Exp. Theor. Phys. 100, 722–730 (2005). https://doi.org/10.1134/1.1926433

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1926433

Keywords

Navigation