Skip to main content
Log in

Experimental investigation of muon-catalyzed dt fusion in wide ranges of D/T mixture conditions

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A vast program of the experimental investigation of muon-catalyzed dt fusion was performed on the Joint Institute for Nuclear Research phasotron. Parameters of the dt cycle were obtained in a wide range of the D/T mixture conditions: temperatures of 20–800 K, densities of 0.2–1.2 of the liquid hydrogen density (LHD), and tritium concentrations of 15–86%. In this paper, the results obtained are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Ponomarev, Contemp. Phys. 31, 219 (1990).

    ADS  Google Scholar 

  2. W. H. Breunlich, P. Kammel, J. S. Cohen, and M. Leon, Annu. Rev. Nucl. Part. Sci. 39, 311 (1989).

    Article  ADS  Google Scholar 

  3. S. S. Gerstein, Yu. V. Petrov, and L. I. Ponomarev, Usp. Fiz. Nauk 160, 3 (1990) [Sov. Phys. Usp. 33, 1 (1990)].

    Google Scholar 

  4. L. I. Ponomarev, Hyperfine Interact. 138, 15 (2001).

    Article  Google Scholar 

  5. L. I. Ponomarev, in Proceedings of the International Workshop on Exotic Atoms, Vienna, 2002 (Austrian Academy of Science, Vienna, 2002).

    Google Scholar 

  6. V. V. Filchenkov and N. N. Grafov, JINR Commun. (Dubna), E15-2003-96 (2003).

  7. L. N. Bogdanova and V. V. Filchenkov, Hyperfine Interact. 138, 321 (2001).

    Article  Google Scholar 

  8. C. Petitjean et al., Fusion Technol. 25, 437 (1994); Yu. V. Petrov and E. G. Sakhnovsky, Hyperfine Interact. 101/102, 647 (1996); V. Anisimov et al., Fusion Technol. 39, 198 (2001).

    Google Scholar 

  9. Yu. V. Petrov, Nature 285, 466 (1980).

    Article  ADS  Google Scholar 

  10. C. Petitjean, Hyperfine Interact. 138, 191 (2001).

    Article  Google Scholar 

  11. N. I. Voropaev et al., Hyperfine Interact. 138, 331 (2001).

    Article  Google Scholar 

  12. M. P. Faifman, L. I. Menshikov, and T. A. Strizh, Muon Catal. Fusion 4, 1 (1989).

    Google Scholar 

  13. M. P. Faifman et al., Hyperfine Interact. 101/102, 179 (1996).

    Article  Google Scholar 

  14. P. Ackerbauer et al., Nucl. Phys. A 652, 311 (1999).

    ADS  Google Scholar 

  15. P. Ackerbauer et al., Hyperfine Interact. 82, 357 (1993).

    Google Scholar 

  16. N. Kawamura et al., Hyperfine Interact. 138, 235 (2001).

    Article  Google Scholar 

  17. S. E. Jones et al., Phys. Rev. Lett. 51, 1757 (1983); 56, 588 (1986).

    ADS  Google Scholar 

  18. S. E. Jones et al., Muon Catal. Fusion 1, 21 (1987); A. J. Caffrey et al., Muon Catal. Fusion 1, 53 (1987).

    Google Scholar 

  19. V. P. Dzhelepov et al., Zh. Éksp. Teor. Fiz. 50, 1235 (1966) [Sov. Phys. JETP 23, 820 (1966)].

    Google Scholar 

  20. V. M. Bystritsky et al., Zh. Éksp. Teor. Fiz. 76, 460 (1979) [Sov. Phys. JETP 49, 232 (1979)].

    Google Scholar 

  21. V. M. Bystritsky et al., Phys. Lett. B 94B, 476 (1980); Zh. Éksp. Teor. Fiz. 80, 1700 (1981) [Sov. Phys. JETP 53, 877 (1981)].

    ADS  Google Scholar 

  22. S. I. Vinitsky et al., Zh. Éksp. Teor. Fiz. 74, 849 (1978) [Sov. Phys. JETP 47, 444 (1978)].

    Google Scholar 

  23. Yu. P. Averin et al., Hyperfine Interact. 118, 111 (1999).

    Google Scholar 

  24. V. R. Bom et al., Hyperfine Interact. 118, 103 (1999).

    Article  Google Scholar 

  25. Yu. P. Averin et al., Hyperfine Interact. 118, 121 (1999).

    Google Scholar 

  26. V. R. Bom et al., Hyperfine Interact. 138, 213 (2001); D. L. Demin et al., JINR Commun. (Dubna), E15-2000-157 (2000).

    Google Scholar 

  27. L. I. Menshikov and L. I. Ponomarev, Pis’ma Zh. Éksp. Teor. Fiz. 39, 542 (1984) [JETP Lett. 39, 663 (1984)].

    Google Scholar 

  28. L. I. Menshikov and L. I. Ponomarev, Pis’ma Zh. Éksp. Teor. Fiz. 42, 12 (1985) [JETP Lett. 42, 13 (1985)].

    Google Scholar 

  29. L. I. Menshikov and L. I. Ponomarev, Z. Phys. D 2, 1 (1986).

    Article  Google Scholar 

  30. V. E. Markushin, Phys. Rev. A 50, 1137 (1994).

    Article  ADS  Google Scholar 

  31. W. Czaplinski et al., Phys. Rev. A 50, 525 (1994); 50, 518 (1994).

    ADS  Google Scholar 

  32. M. P. Faifman and L. I. Menshikov, Hyperfine Interact. 138, 61 (2001).

    Article  Google Scholar 

  33. V. E. Markushin and T. S. Jensen, Hyperfine Interact. 138, 71 (2001).

    Article  Google Scholar 

  34. A. V. Kravtsov et al., Hyperfine Interact. 138, 103 (2001).

    Google Scholar 

  35. W. H. Breunlich et al., Phys. Rev. Lett. 58, 329 (1987).

    Article  ADS  Google Scholar 

  36. D. V. Balin et al., Zh. Éksp. Teor. Fiz. 92, 1543 (1987) [Sov. Phys. JETP 65, 866 (1987)].

    Google Scholar 

  37. E. Vesman, Pis’ma Zh. Éksp. Teor. Fiz. 5, 113 (1967) [JETP Lett. 5, 91 (1967)].

    Google Scholar 

  38. L. N. Bogdanova et al., Zh. Éksp. Teor. Fiz. 83, 1615 (1982) [Sov. Phys. JETP 56, 931 (1982)].

    Google Scholar 

  39. L. I. Menshikov and L. I. Ponomarev, Phys. Lett. B 167, 141 (1986).

    ADS  Google Scholar 

  40. M. Leon, Muon Catal. Fusion 1, 163 (1987); Phys. Rev. A 49, 4438 (1994).

    Google Scholar 

  41. Yu. V. Petrov, V. Yu. Petrov, and H. H. Schmidt, Phys. Lett. B 331, 266 (1994).

    ADS  Google Scholar 

  42. A. V. Demianov et al., JINR Commun. (Dubna), P9-93-374 (1993).

  43. D. L. Demin et al., Hyperfine Interact. 119, 349 (1999); Prib. Tekh. Éksp., No. 1, 21 1999) [Instrum. Exp. Tech. 42, 18 1999)]; Preprint JINR P13-97-243 (Joint Inst. for Nuclear Research, Dubna, 1997).

    Google Scholar 

  44. V. V. Perevozchikov et al., Hyperfine Interact. 119, 353 (1999); Prib. Tekh. Éksp., No. 1, 28 (1999) [Instrum. Exp. Tech. 42, 25 (1999)]; Preprint JINR D15-98-107 (Joint Inst. for Nuclear Research, Dubna, 1998).

    Article  Google Scholar 

  45. V. V. Perevozchikov et al., in Abstracts of Presentations at the Second International Workshop on Interaction of Hydrogen Isotopes with Structural Materials, IHISM-04 (Sarov, 2004), p. 165; Fusion Sci. Technol. (in press).

  46. A. A. Yukhimchuk et al., Hyperfine Interact. 119, 341 (1999).

    Article  Google Scholar 

  47. A. D. Konin, JINR Commun. (Dubna), P13-82-634 (1982).

  48. V. P. Dzhelepov et al., Nucl. Instrum. Methods Phys. Res. A 269, 634 (1988); V. V. Filchenkov, A. D. Konin, and V. G. Zinov, Nucl. Instrum. Methods Phys. Res. A 245, 490 (1986); V. A. Baranov et al., Nucl. Instrum. Methods Phys. Res. A 374, 335 (1996); V. G. Zinov et al., JINR Commun. (Dubna), P13-91-182 (1991).

    Article  ADS  Google Scholar 

  49. V. V. Filchenkov, A. D. Konin, and A. I. Rudenko, Nucl. Instrum. Methods Phys. Res. A 294, 504 (1990).

    Article  ADS  Google Scholar 

  50. V. G. Zinov et al., Prib. Tekh. Éksp., No. 3, 38 (1998) [Instrum. Exp. Tech. 41, 327 (1998)].

  51. M. P. Malkov et al., Guide to Physico-Technical Base of Cryogenics (Énergoatomizdat, Moscow, 1973) [in Russian].

    Google Scholar 

  52. R. Prydz, K. D. Timmerhaus, and R. B. Stewart, Adv. Cryog. Eng. 13, 384 (1967).

    Google Scholar 

  53. A. A. Yukhimchuk et al., Preprint VNIIEF 83-2002 (All-Russian Research Inst. of Experimental Physics, Sarov, 2002).

  54. D. L. Demin et al., J. Low Temp. Phys. 120, 45 (2000); Preprint JINR P8-99-179 (Joint Inst. for Nuclear Research, Dubna, 1999).

    Article  Google Scholar 

  55. D. L. Demin and N. N. Grafov, Determination of Concentrations and Nuclear Density of Hydrogen Isotope Mixtures in MCF Experiments with Liquid Tritium Target: Inner Report (LNP JINR, 1997).

  56. L. Schellenberg, Muon Catal. Fusion 5/6, 73 (1990/1991); Hyperfine Interact. 82, 513 (1993).

    Google Scholar 

  57. B. Gartner et al., Hyperfine Interact. 119, 103 (1999).

    Article  Google Scholar 

  58. N. Kawamura et al., Hyperfine Interact. 118, 213 (1999); Phys. Lett. B 465, 74 (1999).

    Article  Google Scholar 

  59. V. V. Filchenkov, A. E. Drebushko, and A. I. Rudenko, Nucl. Instrum. Methods Phys. Res. A 395, 237 (1997).

    Article  ADS  Google Scholar 

  60. V. G. Zinov, Muon Catal. Fusion 7, 419 (1992).

    Google Scholar 

  61. V. V. Filchenkov, Muon Catal. Fusion 7, 409 (1992).

    Google Scholar 

  62. V. V. Filchenkov and S. M. Sadetsky, Nucl. Instrum. Methods Phys. Res. A 480, 771 (2002); Preprint JINR E15-2000-223 (Joint Inst. for Nuclear Research, Dubna, 2000).

    Article  ADS  Google Scholar 

  63. V. V. Filchenkov et al., Preprint JINR E15-2002-285 (Joint Inst. for Nuclear Research, Dubna, 2002); Hyperfine Interact. 155, 39 (2004).

  64. V. R. Bom and V. V. Filchenkov, Hyperfine Interact. 119, 365 (1999); Preprint JINR E15-98-338 (Joint Inst. for Nuclear Research, Dubna, 1998); V. V. Filchenkov and L. Marczis, JINR Commun. (Dubna), E13-88-566 (1988).

    Article  Google Scholar 

  65. V. V. Filchenkov, JINR Commun. (Dubna), E15-2000-224 (2000).

  66. T. S. Jensen and V. E. Markushin, Eur. Phys. J. D 21, 271 (2002).

    ADS  Google Scholar 

  67. V. V. Filchenkov and N. N. Grafov, Hyperfine Interact. 138, 241 (2001).

    Article  Google Scholar 

  68. L. Bracci et al., Phys. Lett. A 134, 435 (1989); Muon Catal. Fusion 4, 247 (1989).

    Article  ADS  Google Scholar 

  69. D. I. Abramov, V. V. Gusev, and L. I. Ponomarev, Hyperfine Interact. 138, 275 (2001).

    Google Scholar 

  70. W. H. Breunlich et al., Phys. Rev. Lett. 53, 1137 (1984); Muon Catal. Fusion 1, 29, 67, 121 (1987).

    Article  ADS  Google Scholar 

  71. T. Matsuzaki et al., Hyperfine Interact. 118, 229 (1999); Phys. Lett. B 557, 176 (2003).

    Article  Google Scholar 

  72. L. N. Bogdanova, Muon Catal. Fusion 3, 359 (1988).

    Google Scholar 

  73. K. Ishida et al., Phys. Rev. Lett. 90, 043401 (2003); Hyperfine Interact. 118, 203 (1999).

  74. M. Struensee and J. S. Cohen, Phys. Rev. A 38, 44 (1988).

    ADS  Google Scholar 

  75. V. E. Markushin, Muon Catal. Fusion 3, 395 (1988).

    Google Scholar 

  76. M. Kamimura et al., Hyperfine Interact. 118, 217 (1999).

    Article  Google Scholar 

  77. S. E. Jones, S. F. Taylor, and A. N. Anderson, Hyperfine Interact. 82, 303 (1993).

    Article  Google Scholar 

  78. C. Petitjean, Hyperfine Interact. 82, 273 (1993).

    Article  Google Scholar 

  79. K. Ishida et al., Hyperfine Interact. 138, 225 (2001).

    Google Scholar 

  80. M. Jeitler et al., Phys. Rev. A 51, 2881 (1995).

    Article  ADS  Google Scholar 

  81. M. C. Fujiwara et al., Phys. Rev. Lett. 85, 1642 (2000).

    ADS  Google Scholar 

  82. V. V. Filchenkov, Hyperfine Interact. 101/102, 37 (1996).

    Article  Google Scholar 

  83. A. Adamczak et al., At. Data Nucl. Data Tables 62, 255 (1996); Preprint JINR E4-95-488 (Joint Inst. for Nuclear Research, Dubna, 1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 4, 2005, pp. 752–779.

Original English Text Copyright © 2005 by Bom, A. Demin, D. Demin, van Eijk, Faifman, Filchenkov, Golubkov, Grafov, Grishechkin, Gritsaj, Klevtsov, Konin, Kuryakin, Medved’, Musyaev, Perevozchikov, Rudenko, Sadetsky, Vinogradov, A. Yukhimchuk, S. Yukhimchuk, Zinov, Zlatoustovskii.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bom, V.R., Demin, A.M., Demin, D.L. et al. Experimental investigation of muon-catalyzed dt fusion in wide ranges of D/T mixture conditions. J. Exp. Theor. Phys. 100, 663–687 (2005). https://doi.org/10.1134/1.1926428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1926428

Keywords

Navigation