Skip to main content
Log in

Design of an experiment on wakefield acceleration on the VEPP-5 injection complex

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Relativistic beams produced by the VEPP-5 injection complex (Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences) can be used to generate plasma waves with a longitudinal electric field of 1 GV/m. A part of the electron (or positron) driver bunch is accelerated by this field over a distance of up to 1 m. The main advantage of the proposed design over the previous wakefield acceleration experiments is the beam preparation system capable of compressing bunches to a length of σz = 0.1 mm in the longitudinal direction and producing an optimal longitudinal profile of the beam density. The main parameters of the planned device are as follows: the electron energy at the entrance to the plasma is 510 MeV, the number of particles in the bunch is 2 × 1010, the plasma density is up to 1016 cm−3, the number of accelerated particles is up to 3 × 109, and their energy spread is less than 10%. The physical project of the experiment is presented, and the results of computer simulations of the beam-plasma interaction are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Sessler, Phys. Fluids B 2, 1325 (1990).

    Article  ADS  Google Scholar 

  2. C. Adolphsen, in Proceedings of the IEEE Particle Acceleration Conference, Portland, 2003, Vol. 1, p. 668.

  3. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  4. P. Chen, J. M. Dawson, R. W. Huff, and T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985); Phys. Rev. Lett. 55, 1537 (1985).

    ADS  Google Scholar 

  5. E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci. 24, 252 (1996).

    Article  Google Scholar 

  6. A. M. Kudryavtsev, K. V. Lotov, and A. N. Skrinsky, Nucl. Instrum. Methods Phys. Res. A 410, 388 (1998).

    Article  Google Scholar 

  7. J. B. Rosenzweig, B. Breizman, T. Katsouleas, and J. J. Su, Phys. Rev. A 44, 6189 (1991).

    Article  ADS  Google Scholar 

  8. K. V. Lotov, Phys. Rev. E 69, 046405 (2004).

    Google Scholar 

  9. K. V. Lotov, in Proceedings of the 31st EPS Conference on Plasma Physics, London, 2004, paper O-1.31.

  10. A. N. Skrinsky, AIP Conf. Proc. 396, 41 (1997).

    Google Scholar 

  11. C. Joshi, B. Blue, C. E. Clayton, et al., Phys. Plasmas 9, 1845 (2002).

    Article  ADS  Google Scholar 

  12. J. B. Rosenzweig, D. B. Cline, B. Cole, et al., Phys. Rev. Lett. 61, 98 (1988).

    Article  ADS  Google Scholar 

  13. J. B. Rosenzweig, P. Schoessow, B. Cole, et al., Phys. Rev. A 39, 1586 (1989).

    Article  ADS  Google Scholar 

  14. J. B. Rosenzweig, P. Schoessow, B. Cole, et al., Phys. Fluids B 2, 1376 (1990).

    Article  ADS  Google Scholar 

  15. K. Nakajima, A. Enomoto, H. Kobayashi, et al., Nucl. Instrum. Methods Phys. Res. A 292, 12 (1990).

    Article  ADS  Google Scholar 

  16. A. Ogata, AIP Conf. Proc. 279, 420 (1992).

    Google Scholar 

  17. A. K. Berezin, Ya. B. Fainberg, V. A. Kiselev, et al., Fiz. Plazmy 20, 663 (1994) [Plasma Phys. Rep. 20, 596 (1994)].

    Google Scholar 

  18. M. J. Hogan, R. Assmann, F.-J. Decker, et al., Phys. Plasmas 7, 2241 (2000).

    Article  ADS  Google Scholar 

  19. J. S. T. Ng, P. Chen, H. Baldis, et al., Phys. Rev. Lett. 87, 244801 (2001).

  20. C. E. Clayton, B. E. Blue, E. S. Dodd, et al., Phys. Rev. Lett. 88, 154801 (2002).

    Google Scholar 

  21. N. Barov, J. B. Rosenzweig, M. E. Conde, et al., Phys. Rev. ST Accel. Beams 3, 011 301 (2000).

    Google Scholar 

  22. V. Yakimenko, I. V. Pogorelsky, I. V. Pavlishin, et al., Phys. Rev. Lett. 91, 014802 (2003).

    Google Scholar 

  23. K. V. Lotov, Phys. Plasmas 5, 785 (1998).

    Article  ADS  Google Scholar 

  24. K. V. Lotov, Nucl. Instrum. Methods Phys. Res. A 410, 461 (1998).

    Article  Google Scholar 

  25. K. V. Lotov, in Proceedings of the 6th European Particle Accelerator Conference, Stockholm, 1998, p. 806.

  26. T. Katsouleas, J. J. Su, W. B. Mori, and J. M. Dawson, Phys. Fluids B 2, 1384 (1990).

    Article  ADS  Google Scholar 

  27. M. S. Avilov, V. E. Akimov, A. V. Antoshin, et al., in Proceedings of the 21st International LINAC Conference, Gyeongju, 2002, p. 299.

  28. A. V. Burdakov, S. V. Lebedev, K. I. Mekler, et al., in Proceedings of the XXI International Conference on Phenomena in Ionized Gases, Bochum, 1993, Vol. 1, p. 139.

  29. R. Yu. Akentjev, A. V. Arzhannikov, V. T. Astrelin, et al., Trans. Fusion Technol. 43, 30 (2003).

    Google Scholar 

  30. B. N. Breizman, P. Z. Chebotaev, A. M. Kudryavtsev, et al., AIP Conf. Proc. 396, 75 (1997).

    Google Scholar 

  31. K. V. Lotov, Phys. Rev. ST Accel. Beams 6, 061301 (2003).

    Google Scholar 

  32. http://www.inp.nsk.su/∼lotov/lcode.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 31, No. 4, 2005, pp. 327–335.

Original Russian Text Copyright © 2005 by Burdakov, Kudryavtsev, Logatchov, Lotov, Petrenko, Skrinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdakov, A.V., Kudryavtsev, A.M., Logatchov, P.V. et al. Design of an experiment on wakefield acceleration on the VEPP-5 injection complex. Plasma Phys. Rep. 31, 292–299 (2005). https://doi.org/10.1134/1.1904145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1904145

Keywords

Navigation