Skip to main content

Imaginary-time method in quantum mechanics and field theory

Abstract

An imaginary-time method was developed for calculating the probability of particle transmission through smooth barriers variable with time. Within the imaginary-time method, the tunneling process is described by using classical equations of motion written in terms of an imaginary time (tit), while the probability of tunneling is determined by the imaginary part of the action functional, this imaginary part being calculated along the subbarrier particle trajectory. The fundamentals of the imaginary-time method are surveyed, and its applications in the theory of atomic-state ionization under the effect of constant electric and magnetic fields that have various configurations, in the field of intense monochromatic laser radiation and of an ultrashort electromagnetic pulse, in the process of Lorentz ionization of atoms and ions during their motion in a strong magnetic field, etc., are outlined. The applications of the imaginary-time method in relativistic cases—for example, in the theory of ionization of levels of multiply charged ions whose binding energy is commensurate with the electron rest energy—and in quantum field theory (Schwinger effect, which consists in the production of electron-positron pairs from a vacuum by a superstrong external field) are briefly described. Particular attention is given to methodological issues and details of the imaginary-time method that are of importance in solving specific physics problems, but which are usually skipped in original publications.

This is a preview of subscription content, access via your institution.

References

  1. L. D. Landau, Phys. Z. Sowjetunion 1, 88 (1932); 2, 46 (1932); Collected Works (Nauka, Moscow, 1969), Vol. 1.

    MATH  Google Scholar 

  2. E. M. Lifshits, Zh. Éksp. Teor. Fiz. 8, 930 (1938).

    MATH  Google Scholar 

  3. E. E. Nikitin and L. P. Pitaevskii, Usp. Fiz. Nauk 163(9), 101 (1993) [Phys.-Usp. 36 (9), 851 (1993)].

    Google Scholar 

  4. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, Oxford, 1977).

    Google Scholar 

  5. A. M. Dykhne, Zh. Éksp. Teor. Fiz. 38, 570 (1960) [Sov. Phys. JETP 11, 411 (1960)]; 41, 1324 (1961) [14, 941 (1961)].

    MATH  Google Scholar 

  6. N. B. Delone and V. P. Krainov, Atom in a Strong Light Field (Energoatomizdat, Moscow, 1984).

    Google Scholar 

  7. R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965; Mir, Moscow, 1968).

    Google Scholar 

  9. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Éksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)]; 51, 309 (1966) [24, 207 (1966)].

    Google Scholar 

  10. V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov, Zh. Éksp. Teor. Fiz. 53, 331 (1967) [Sov. Phys. JETP 26, 222 (1967)].

    Google Scholar 

  11. A. M. Perelomov and V. S. Popov, Zh. Éksp. Teor. Fiz. 52, 514 (1967) [Sov. Phys. JETP 25, 336 (1967)].

    Google Scholar 

  12. L. P. Kotova, A. M. Perelomov, and V. S. Popov, Zh. Éksp. Teor. Fiz. 54, 1151 (1968) [Sov. Phys. JETP 27, 616 (1968)].

    Google Scholar 

  13. V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 13, 261 (1971) [JETP Lett. 13, 185 (1971)]; Zh. Éksp. Teor. Fiz. 61, 1334 (1971) [Sov. Phys. JETP 34, 709 (1971)].

    Google Scholar 

  14. V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 18, 435 (1973) [JETP Lett. 18, 255 (1973)]; Yad. Fiz. 19, 1140 (1974) [Sov. J. Nucl. Phys. 19, 584 (1974)].

    Google Scholar 

  15. M. S. Marinov and V. S. Popov, Yad. Fiz. 15, 1271 (1972) [Sov. J. Nucl. Phys. 15, 702 (1972)]; 16, 809 (1972) [16, 449 (1972)].

    Google Scholar 

  16. M. S. Marinov and V. S. Popov, Fortschr. Phys. 25, 373 (1977).

    Google Scholar 

  17. V. S. Popov, B. M. Karnakov, and V. D. Mur, Zh. Éksp. Teor. Fiz. 113, 1579 (1998) [JETP 86, 860 (1998)].

    Google Scholar 

  18. V. S. Popov, A. V. Sergeev, and A. V. Shcheblykin, Zh. Éksp. Teor. Fiz. 102, 1453 (1992) [Sov. Phys. JETP 75, 787 (1992)].

    Google Scholar 

  19. V. S. Popov and A. V. Sergeev, Phys. Lett. A 172, 193 (1993); 193, 165 (1994); Zh. Éksp. Teor. Fiz. 105, 568 (1994) [JETP 78, 303 (1994)].

    Article  ADS  MathSciNet  Google Scholar 

  20. V. S. Popov, in New Methods in Quantum Theory, Ed. by C. A. Tsipis et al. (Kluwer Acad. Publ., Dordrecht, 1996), p. 149.

    Google Scholar 

  21. V. S. Popov and A. V. Sergeev, Pis’ma Zh. Éksp. Teor. Fiz. 63, 398 (1996) [JETP Lett. 63, 417 (1996)]; Zh. Éksp. Teor. Fiz. 113, 2047 (1998) [JETP 86, 1122 (1998)].

    Google Scholar 

  22. V. S. Popov, V. D. Mur, and B. M. Karnakov, Pis’ma Zh. Éksp. Teor. Fiz. 66, 213 (1997) [JETP Lett. 66, 229 (1997)]; Phys. Lett. A 250, 20 (1998).

    Google Scholar 

  23. V. D. Mur, B. M. Karnakov, and V. S. Popov, Zh. Éksp. Teor. Fiz. 114, 798 (1998) [JETP 87, 433 (1998)].

    Google Scholar 

  24. V. S. Popov, B. M. Karnakov, and V. D. Mur, Pis’ma Zh. Éksp. Teor. Fiz. 79, 320 (2004) [JETP Lett. 79, 262 (2004)].

    Google Scholar 

  25. B. M. Karnakov, V. D. Mur, and V. S. Popov, quant-ph/0405158 v1.

  26. V. S. Popov, B. M. Karnakov, and V. D. Mur, Phys. Lett. A 229, 306 (1997); Zh. Éksp. Teor. Fiz. 113, 1579 (1998) [JETP 86, 860 (1998)].

    Article  ADS  Google Scholar 

  27. J. Heading, An Introduction to Phase-Integral Methods (Methuen, London, 1962; Mir, Moscow, 1965).

    Google Scholar 

  28. N. Fröman and P. O. Fröman, JWKB Approximation (North-Holland, Amsterdam, 1965; Mir, Moscow, 1967).

    Google Scholar 

  29. L. I. Ponomarev, Lectures on the Semiclassical Approximation, Preprint ITF Akad. Nauk USSR (Inst. Theor. Phys., Kiev, 1967).

    Google Scholar 

  30. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions and Decays in Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1971), Chap. 5.

    Google Scholar 

  31. M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972).

    Article  ADS  Google Scholar 

  32. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975; Benjamin, Reading, Mass., 1977).

    Google Scholar 

  33. V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics (Nauka, Moscow, 1976; Reidel, Dordrecht, 1981).

    Google Scholar 

  34. V. M. Galitsky, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics (Nauka, Moscow, 1992), Chap. 9 [in Russian].

    Google Scholar 

  35. B. M. Karnakov, V. D. Mur, and V. S. Popov, Yad. Fiz. 64, 729 (2001) [Phys. At. Nucl. 64, 670 (2001)].

    Google Scholar 

  36. V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov, Preprint No. 517, ITÉF (Inst. Theor. and Exp. Phys., Moscow, 1967).

  37. V. S. Popov, Doctoral Dissertation in Mathematics and Physics (Inst. of Theor. and Exp. Phys., Moscow, 1974).

    Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Mechanics (Fizmatlit, Moscow, 2001; Pergamon, Oxford, 1976).

    Google Scholar 

  39. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Univ. Press, Cambridge, 1927; ONTI, Moscow, 1937).

    Google Scholar 

  40. A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 50, 255 (1966) [Sov. Phys. JETP 23, 168 (1966)].

    Google Scholar 

  41. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1965 (1964) [Sov. Phys. JETP 20, 1320 (1964)].

    Google Scholar 

  42. N. B. Delone and V. P. Krainov, J. Opt. Soc. Am. B 8, 1207 (1991); V. P. Krainov, J. Opt. Soc. Am. B 14, 425 (1997).

    ADS  Google Scholar 

  43. V. P. Krainov, W. Xiong, and S. L. Chin, Laser Phys. 2, 467 (1992).

    Google Scholar 

  44. V. P. Krainov and V. M. Ristich, Zh. Éksp. Teor. Fiz. 101, 1479 (1992) [Sov. Phys. JETP 74, 789 (1992)].

    Google Scholar 

  45. N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk 168, 531 (1998) [Phys. Usp. 41, 469 (1998)].

    Google Scholar 

  46. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Zh. Éksp. Teor. Fiz. 91, 2008 (1986) [Sov. Phys. JETP 64, 1191 (1986)].

    Google Scholar 

  47. N. B. Delone and V. P. Krainov, Nonlinear Atom Ionization Induced by Laser Radiation (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  48. V. S. Popov, Usp. Fiz. Nauk 169, 819 (1999) [Phys. Usp. 42, 733 (1999)].

    Google Scholar 

  49. Yu. N. Demkov and G. F. Drukarev, Zh. Éksp. Teor. Fiz. 47, 918 (1964) [Sov. Phys. JETP 20, 614 (1964)].

    Google Scholar 

  50. V. D. Mur, S. V. Popruzhenko, and V. S. Popov, Zh. Éksp. Teor. Fiz. 119, 903 (2001) [JETP 92, 777 (2001)].

    Google Scholar 

  51. S. P. Goreslavskii and S. V. Popruzhenko, Zh. Éksp. Teor. Fiz. 110, 1200 (1996) [JETP 83, 661 (1996)]; Laser Phys. 6, 780 (1996); 7, 100 (1997).

    Google Scholar 

  52. A. D. Sakharov, R. Z. Lyudaev, E. N. Smirnov, et al., Dokl. Akad. Nauk SSSR 165, 65 (1965) [Sov. Phys.-Dokl. 10, 1045 (1965)].

    Google Scholar 

  53. A. D. Sakharov, Usp. Fiz. Nauk 88, 725 (1966) [Sov. Phys.-Usp. 9, 294 (1966)]

    Google Scholar 

  54. L. Keldysh, Multiphoton ionization by a very short laser pulse (private communication).

  55. V. S. Popov, Laser Phys. 10, 1033 (2000); Pis’ma Zh. Éksp. Teor. Fiz. 73, 3 (2001) [JETP Lett. 73, 1 (2001)]; Zh. Éksp. Teor. Fiz. 120, 315 (2001) [JETP 93, 278 (2001)].

    Google Scholar 

  56. T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).

    Google Scholar 

  57. M. Lopez-Cabrera, D. Z. Goodson, D. R. Herschbach, and J. D. Morgan, Phys. Rev. Lett. 68, 1992 (1992).

    ADS  Google Scholar 

  58. D. M. Volkov, Z. Phys. 84, 250 (1935); Zh. Éksp. Teor. Fiz. 7, 1286 (1937).

    Google Scholar 

  59. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Fizmatlit, Moscow, 2003; Pergamon, Oxford, 1975).

    Google Scholar 

  60. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

    Google Scholar 

  61. J. Schwinger, Phys. Rev. 82, 664 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  62. N. Milosevic, V. P. Krainov, and T. Brabec, Phys. Rev. Lett. 89, 193001 (2002); (b) J. Phys. B 35, 3515 (2002).

  63. E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).

    Article  ADS  Google Scholar 

  64. N. B. Narozhnyi and A. I. Nikishov, Zh. Éksp. Teor. Fiz. 65, 862 (1973) [Sov. Phys. JETP 38, 427 (1974)].

    Google Scholar 

  65. A. Ringwald, Phys. Lett. B 510, 107 (2001).

    ADS  Google Scholar 

  66. V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 74, 151 (2001) [JETP Lett. 74, 133 (2001)]; Zh. Éksp. Teor. Fiz. 121, 1235 (2002) [JETP 94, 1057 (2002)]; Phys. Lett. A 298, 83 (2002).

    Google Scholar 

  67. A. I. Nikishov, Nucl. Phys. B 21, 346 (1970); N. B. Narozhnyi and A. I. Nikishov, Yad. Fiz. 11, 1072 (1970) [Sov. J. Nucl. Phys. 11, 596 (1970)].

    ADS  Google Scholar 

  68. S. S. Bulanov, Phys. Rev. E 69, 03460 (2004).

    Google Scholar 

  69. V. S. Vanyashin and M. V. Terent’ev, Zh. Éksp. Teor. Fiz. 48, 565 (1965) [Sov. Phys. JETP 21, 375 (1965)].

    MathSciNet  Google Scholar 

  70. V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959).

    Article  ADS  Google Scholar 

  71. F. Sauter, Z. Phys. 69, 742 (1931).

    ADS  MATH  Google Scholar 

  72. I. B. Khriplovich, Yad. Fiz. 65, 1292 (2002) [Phys. At. Nucl. 65, 1259 (2002)].

    MathSciNet  Google Scholar 

  73. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1982; Mir, Moscow, 1985).

    Google Scholar 

  74. V. A. Rubakov, Classical Gauge Fields (Editorial URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  75. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1979; Wiley, New York, 1965)

    Google Scholar 

  76. L. I. Shiff, Quantum Mechanics (McGraw-Hill, New York, 1955; Inostrannaya Literatura, Moscow, 1957).

    Google Scholar 

  77. B. M. Karnakov, V. D. Mur, and V. S. Popov, Yad. Fiz. 62, 1444 (1999) [Phys. At. Nucl. 62, 1363 (1999)].

    Google Scholar 

  78. V. S. Popov, Preprints Nos. 10-04, 13-04, ITÉF (Inst. Theor. and Exp. Phys., Moscow, 2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 68, No. 4, 2005, pp. 717–738.

Original Russian Text Copyright © 2005 by Popov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Popov, V.S. Imaginary-time method in quantum mechanics and field theory. Phys. Atom. Nuclei 68, 686–708 (2005). https://doi.org/10.1134/1.1903097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1903097

Keywords

  • Magnetic Field
  • Imaginary Part
  • Particle Trajectory
  • Strong Magnetic Field
  • Original Publication