Skip to main content
Log in

Thermal correction to resistivity in dilute Si-MOSFET two-dimensional systems

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Neglecting electron-electron interactions and quantum interference effects, we calculate the classical resistivity of a two-dimensional electron (hole) gas, taking into account the degeneracy and the thermal correction due to the combined Peltier and Seebeck effects. The resistivity is found to be a universal function of the temperature, expressed in units of (h/e 2)(k F l)−1. Analysis of the compressibility and thermopower points to the thermodynamic nature of the metal-insulator transition in two-dimensional systems. We reproduce the beating pattern of Shubnikov-de Haas oscillations in both the crossed field configuration and Si-MOSFET valley splitting cases. The consequences of the integer quantum Hall effect in a dilute Si-MOSFET two-dimensional electron gas are discussed. The giant parallel magnetoresistivity is argued to result from the magnetic-field-driven disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, et al., Phys. Rev. B 50, 8039 (1994).

    Article  ADS  Google Scholar 

  2. D. Popovic, A. B. Fowler, and S. Washburn, Phys. Rev. Lett. 79, 1543 (1997).

    ADS  Google Scholar 

  3. P. T. Coleridge, R. L. Williams, Y. Feng, and P. Zawadzki, Phys. Rev. B 56, R12764 (1997).

  4. M. Y. Simmons, A. R. Hamilton, M. Pepper, et al., Phys. Rev. Lett. 80, 1292 (1998); Physica E (Amsterdam) 11, 161 (2001).

    Article  ADS  Google Scholar 

  5. Y. Hanein, U. Meirav, D. Shahar, et al., Phys. Rev. Lett. 80, 1288 (1998).

    Article  ADS  Google Scholar 

  6. T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys. Rev. Lett. 82, 3875 (1999).

    Article  ADS  Google Scholar 

  7. S. A. Vitkalov, H. Zheng, K. M. Mertes, et al., Phys. Rev. Lett. 85, 2164 (2000); cond-mat/0101196.

    Article  ADS  Google Scholar 

  8. D. Simonian, S. V. Kravchenko, M. P. Sarachik, and V. M. Pudalov, Phys. Rev. Lett. 79, 2304 (1997).

    Article  ADS  Google Scholar 

  9. C. G. M. Kirby and M. J. Laubitz, Metrologia 9, 103 (1973).

    Article  ADS  Google Scholar 

  10. M. V. Cheremisin, Zh. Éksp. Teor. Fiz. 119, 409 (2001) [JETP 92, 357 (2001)].

    Google Scholar 

  11. M. V. Cheremisin, in Proceedings on ICPS’26 (Edinburgh, UK, 2002), D113.

    Google Scholar 

  12. A. Mittal, M. W. Keller, R. G. Wheeler, and D. E. Prober, Physica B (Amsterdam) 194–196, 167 (1994).

    Google Scholar 

  13. V. M. Pudalov, A. Punnoose, G. Brunthaler, et al., cond-mat/0104347.

  14. V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, Pis’ma Zh. Éksp. Teor. Fiz. 70, 48 (1999) [JETP Lett. 70, 48 (1999)].

    Google Scholar 

  15. J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 68, 674 (1992); Phys. Rev. B 50, 1760 (1994).

    ADS  Google Scholar 

  16. R. Fletcher, V. M. Pudalov, A. D. B. Radcliffe, and C. Possanzini, Semicond. Sci. Technol. 16, 386 (2001).

    Article  ADS  Google Scholar 

  17. V. M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, cond-mat/0103087.

  18. A. R. Hamilton, M. Y. Simmons, M. Pepper, et al., Phys. Rev. Lett. 87, 126802 (2001).

    Google Scholar 

  19. G. Brunthaler, A. Prinz, G. Bauer, and V. M. Pudalov, Phys. Rev. Lett. 87, 096802 (2001).

    Google Scholar 

  20. A. Lewalle, M. Pepper, C. J. B. Ford, and E. H. Hwang, Phys. Rev. B 66, 075324 (2002).

    Google Scholar 

  21. H. Noh, M. P. Lilly, D. C. Tsui, and J. A. Simmons, Phys. Rev. B 68, 165308 (2003); cond-mat/0301301.

    Google Scholar 

  22. Xuan P. A. Gao, A. P. Mills, Jr., A. P. Ramirez, and L. N. Pfeiffer, Phys. Rev. Lett. 88, 166 803 (2002); cond-mat/0308003.

  23. A. Gold and V. T. Dolgopolov, Phys. Rev. B 33, 1076 (1986).

    ADS  Google Scholar 

  24. G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 65, 020201 (2002).

    Google Scholar 

  25. V. M. Pudalov, M. E. Gershenson, H. Kojima, and G. Brunthaler, Phys. Rev. Lett. 91, 126403 (2003).

    Google Scholar 

  26. A. K. Savchenko, private communication.

  27. M. V. Cheremisin, in Proceedings on NATO ASI (Windsor, UK, 2001); cond-mat/0102153.

    Google Scholar 

  28. V. M. Pudalov, S. G. Semenchinskii, and V. S. Edelman, Zh. Éksp. Teor. Fiz. 89, 1870 (1985) [Sov. Phys. JETP 62, 1079 (1985)].

    Google Scholar 

  29. F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968).

    Article  ADS  Google Scholar 

  30. S. V. Kravchenko, A. A. Shashkin, D. A. Bloore, and T. M. Klapwijk, Solid State Commun. 116, 495 (2000).

    Article  Google Scholar 

  31. V. M. Pudalov, M. E. Gershenson, H. Kojima, and N. Butch, Phys. Rev. Lett. 88, 196404 (2002).

    Google Scholar 

  32. S. M. Girvin and M. Jonson, J. Phys. C 15, L1147 (1982).

  33. S. V. Kravchenko, D. Simonian, M. P. Sarachik, and A. D. Kent, Phys. Rev. B 58, 3553 (1998).

    Article  ADS  Google Scholar 

  34. V. T. Dolgopolov and A. Gold, Pis’ma Zh. Éksp. Teor. Fiz. 71, 42 (2000) [JETP Lett. 71, 27 (2000)].

    Google Scholar 

  35. S. C. Dultz and H. W. Jiang, Phys. Rev. Lett. 84, 4689 (2000).

    Article  ADS  Google Scholar 

  36. S. I. Dorozhkin, J. H. Smet, and K. von Klitzing, Phys. Rev. B 63, 121301 (2001).

    Google Scholar 

  37. O. Prus, M. Reznikov, U. Sivan, and V. M. Pudalov, Phys. Rev. Lett. 88, 016801 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 127, No. 3, 2005, pp. 674–685.

Original English Text Copyright © 2005 by Cheremisin.

This article was submitted by author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheremisin, M.V. Thermal correction to resistivity in dilute Si-MOSFET two-dimensional systems. J. Exp. Theor. Phys. 100, 597–607 (2005). https://doi.org/10.1134/1.1901771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1901771

Keywords

Navigation