Skip to main content
Log in

Probabilities of radiative transitions between Stark states in orthohelium

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The wavefunctions, matrix elements, and probabilities of radiative transitions between Stark sub-levels of atomic multiplets are calculated as a function of the strength of a dc electric field. The general expressions for the wavefunction of a multiplet state in a field obtained by perturbation theory for close-lying levels with the use of completely reduced Green’s function allow one to determine the field dependence of both the dipole-allowed and dipole-forbidden radiation amplitudes. A decomposition of the second-order amplitude for the transition between fine-structure sublevels of two levels of equal parity into irreducible components is obtained. Numerical calculations of the probabilities of radiative transitions between triplet states of helium show the possibility of experimental observation of the emergence and vanishing of Stark lines of radiative transitions in the vicinity of anticrossing fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reusch, C. Dieste, S. Garnica, and G. von Oppen, J. Phys. B: At. Mol. Opt. Phys. 34, 2145 (2001).

    Article  ADS  Google Scholar 

  2. R. Drozdowski, M. Busch, and G. von Oppen, J. Phys. B: At. Mol. Opt. Phys. 35, 2494 (2002).

    Article  Google Scholar 

  3. R. Schumann, M. Dammasch, U. Eichmann, et al., J. Phys. B: At. Mol. Opt. Phys. 30, 2581 (1997).

    Article  ADS  Google Scholar 

  4. L. V. Gorchakov, V. P. Demkin, I. I. Murav’ev, and A. M. Yancharina, Emission of Inert Gas Atoms in Electrical Field (Tomsk. Gos. Univ., Tomsk, 1984) [in Russian].

    Google Scholar 

  5. M. Bellermann, T. Bergeman, A. Haffmans, et al., Phys. Rev. A 46, 5836 (1992).

    Article  ADS  Google Scholar 

  6. A. A. Kamenski and V. D. Ovsiannikov, J. Phys. B 33, 491, 5543 (2000).

    ADS  Google Scholar 

  7. A. A. Kamenskii and V. D. Ovsyannikov, Zh. Éksp. Teor. Fiz. 120, 52 (2001) [JETP 93, 43 (2001)].

    Google Scholar 

  8. A. A. Kamenski and V. D. Ovsiannikov, Can. J. Phys. 81, 755 (2003).

    Article  ADS  Google Scholar 

  9. A. Derevyanko, W. R. Johnson, V. D. Ovsyannikov, et al., Zh. Éksp. Teor. Fiz. 115, 494 (1999) [JETP 88, 272 (1999)].

    Google Scholar 

  10. A. Derevyanko, W. R. Johnson, V. D. Ovsiannikov, et al., Phys. Rev. A 60, 986 (1999).

    ADS  Google Scholar 

  11. I. L. Bolgova, V. D. Ovsyannikov, V. G. Pal’chikov, et al., Zh. Éksp. Teor. Fiz. 123, 1145 (2003) [JETP 96, 1006 (2003)].

    Google Scholar 

  12. I. I. Sobel’man, Atomic Spectra and Radiative Transitions (Nauka, Moscow, 1977; Springer, Berlin, 1979), Chap. 9.

    Google Scholar 

  13. N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Phys. Rep. 141, 319 (1986).

    Article  Google Scholar 

  14. V. D. Ovsiannikov and S. V. Goossev, Phys. Scr. 57, 506 (1998).

    Article  ADS  Google Scholar 

  15. V. A. Davydkin and V. D. Ovsiannikov, J. Phys. B 17, L207 (1984); 19, 2071 (1986).

    Article  ADS  Google Scholar 

  16. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Google Scholar 

  17. NIST Atomic Spectra Database Levels Data, http://physics.nist.gov.

  18. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer, Berlin, 1957; Fizmatgiz, Moscow, 1960).

    Google Scholar 

  19. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory (Nauka, Moscow, 1968; Pergamon, Oxford, 1971), Part 1.

    Google Scholar 

  20. L. P. Rapoport, B. A. Zon, and N. L. Manakov, Theory of Multiphoton Processes in Atoms (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  21. V. A. Davydkin, V. D. Ovsiannikov, and B. A. Zon, Laser Phys. 3, 449 (1993).

    Google Scholar 

  22. P. P. Herrmann, J. Hoffnagle, N. Schlumpf, et al., J. Phys. B 19, 1271, 5543 (1986).

    ADS  Google Scholar 

  23. E. Stambulchik and Y. Maron, Phys. Rev. A 56, 2713 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 127, No. 3, 2005, pp. 551–569.

Original Russian Text Copyright © 2005 by Kamenski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Ovsyannikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenskii, A.A., Ovsyannikov, V.D. Probabilities of radiative transitions between Stark states in orthohelium. J. Exp. Theor. Phys. 100, 487–504 (2005). https://doi.org/10.1134/1.1901761

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1901761

Keywords

Navigation