Skip to main content
Log in

Plasma flow crisis and the limiting electron temperature in a vacuum arc in axial magnetic field

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The possibility of supersonic motion of cathode plasma in a low-current vacuum arc in an axial magnetic field has been studied. It is shown that an increase in the electron temperature unavoidably leads to a plasma flow crisis, whereby the plasma velocity decreases to the sound velocity. The dependence of the limiting length of a stationary flow on the magnetic field has been studied. The maximum possible electron temperature T cr in the plasma is determined by the initial ion energy and can be estimated as T cr ≈ 3T m, where T m is the maximum electron temperature in the cathode spot region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Novikov, Applied Magnetic Fluid Dynamics (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  2. G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1991), Vol. 1.

    Google Scholar 

  3. G. A. Mesyats and S. A. Barengol’ts, Usp. Fiz. Nauk 172, 1113 (2002) [Phys. Usp. 45, 1001 (2002)].

    Google Scholar 

  4. Ya. I. Londer and K. N. Ul’yanov, Teplofiz. Vys. Temp. 39, 699 (2001).

    Google Scholar 

  5. Ya. I. Londer and K. N. Ul’yanov, Teplofiz. Vys. Temp. 42, 198 (2004).

    Google Scholar 

  6. I. A. Krinberg, Pis’ma Zh. Tekh. Fiz. 29(12), 42 (2003) [Tech. Phys. Lett. 29, 504 (2003)].

    Google Scholar 

  7. I. A. Krinberg, Prikl. Fiz. 6, 77 (2004).

    Google Scholar 

  8. V. V. Vikhrev and S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1980; Consultants Bureau, New York, 1986), Vol. 10, pp. 243–318.

    Google Scholar 

  9. A. Anders, Phys. Rev. E 55, 969 (1997).

    Article  ADS  Google Scholar 

  10. I. A. Krinberg, Zh. Tekh. Fiz. 71(11), 25 (2001) [Tech. Phys. 46, 1371 (2001)].

    Google Scholar 

  11. A. Anders and G. Y. Yushkov, J. Appl. Phys. 91, 4824 (2002).

    Article  ADS  Google Scholar 

  12. M. Galonska, R. Hollinger, et al., in Proceedings of the 21st International Symposium on Discharges and Electrical Insulation in Vacuum, Yalta, 2004, Vol. 1, pp. 209–212.

  13. G. Y. Yushkov, A. Anders, E. M. Oks, and I. G. Brown, J. Appl. Phys. 88, 5618 (2000).

    Article  ADS  Google Scholar 

  14. E. M. Oks, A. Anders, et al., IEEE Trans. Plasma Sci. 24, 1174 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 31, No. 6, 2005, pp. 89–94.

Original Russian Text Copyright © 2005 by Krinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krinberg, I.A. Plasma flow crisis and the limiting electron temperature in a vacuum arc in axial magnetic field. Tech. Phys. Lett. 31, 261–263 (2005). https://doi.org/10.1134/1.1894452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1894452

Keywords

Navigation