Skip to main content
Log in

Effect of the parameters of the plasma channel produced by a high-current relativistic electron beam in dense gaseous media on the beam transportation stability

  • Electron and Ion Beams, Accelerators
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the time evolution of the plasma channel produced by a high-current electron beam (with an electron energy of E e = 1.1 MeV, a beam current of I b = 24 kA, and a pulse duration of t = 60 ns) in helium, nitrogen, neon, air, argon, krypton, xenon, and humid air (air: H2O) at pressures from 1 to 760 Torr. It is shown that, in gases characterized by a small ratio of the collision frequency to the gas ionization rate u i , the electron beam produces a broad high-conductivity plasma channel, such that R b/R p < 1, where R b and R p are the beam and channel radii, respectively. As a result, large-scale resistive hose instability is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Norman, L. S. Polak, P. I. Sopin, and G. A. Sorokin, in Mechanisms of Plasma-Chemical Reactions between Hydrocarbons, Ed. by L. S. Polak (Inst. Neftekhim. Sint. Akad. Nauk SSSR, Moscow, 1985) [in Russian].

    Google Scholar 

  2. V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  3. G. E. Remnev, A. I. Pushkarev, and M. A. Pushkarev, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 7, 91 (2001).

  4. M. N. Rosenbluth, Phys. Fluids 3, 932 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  5. H. S. Uhm and M. Lampe, Phys. Fluids 23, 1574 (1980).

    ADS  Google Scholar 

  6. E. P. Lee and J. E. Brandenburg, Phys. Fluids 31, 3403 (1988).

    ADS  Google Scholar 

  7. E. R. Nadezhdin and G. A. Sorokin, Fiz. Plazmy 14, 619 (1988) [Sov. J. Plasma Phys. 14, 365 (1988)].

    Google Scholar 

  8. E. H. Choi and H. S. Uhm, J. Appl. Phys. 65, 3356 (1989).

    ADS  Google Scholar 

  9. N. A. Kondrat’ev, G. I. Kotlyarevskii, and V. I. Smetanin, Zh. Tekh. Fiz. 59(1), 118 (1989) [Sov. Phys. Tech. Phys. 34, 450 (1989)].

    Google Scholar 

  10. A. W. Ali, Laser Part. Beams 6, 105 (1988).

    ADS  Google Scholar 

  11. K. R. Davey, Phys. Fluids 26, 1919 (1983).

    Article  ADS  MATH  Google Scholar 

  12. G. F. Kiuttu, R. J. Adler, and R. J. Richter-Sand, Phys. Rev. Lett. 54, 1668 (1985).

    Article  ADS  Google Scholar 

  13. E. K. Kolesnikov and A. S. Manuilov, Zh. Tekh. Fiz. 67(6), 69 (1997) [Tech. Phys. 42, 648 (1997)].

    Google Scholar 

  14. I. Z. Gleizer, A. N. Didenko, L. P. Dronova, et al., At. Energ. 36, 378 (1974).

    Google Scholar 

  15. N. A. Kondratiev, V. I. Smetanin, and Yu. P. Surikov, Nucl. Instrum. Methods Phys. Res. 53, 229 (1991).

    ADS  Google Scholar 

  16. N. A. Kondratiev, G. I. Kotliarevskii, V. I. Smetanin, and Yu. P. Surikov, Phys. Lett. A 148, 89 (1990).

    Article  ADS  Google Scholar 

  17. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  18. A. V. Agafonov, Atom. Tekh. Rubezhom, No. 10, 31 (1973).

  19. E. A. Abramyan, B. A. Al’terkop, and G. D. Kuleshov, Intense Electron Beams (Énergoatomizdat, Moscow, 1984) [in Russian].

    Google Scholar 

  20. E. J. Lauwer, R. J. Briggs, and T. J. Fessenden, Phys. Fluids 21, 1334 (1978).

    ADS  Google Scholar 

  21. R. F. Hubbard, R. F. Fernsler, S. P. Slinker, et al., in Proceedings of the 5th International Conference on High Power Particle Beams (BEAMS-83), San Francisco, 1983, pp. 370–372.

  22. E. K. Kolesnikov and A. S. Manuilov, Zh. Tekh. Fiz. 60(3), 40 (1990) [Sov. Phys. Tech. Phys. 35, 298 (1990)].

    Google Scholar 

  23. G. A. Sorokin, Collective Methods of Acceleration and Beam-Plasma Interaction (RI AN SSSR, Moscow, 1982) [in Russian].

    Google Scholar 

  24. G. Yu. Kurevlev and G. A. Sorokin, Teplofiz. Vys. Temp. 28, 436 (1990).

    Google Scholar 

  25. Yu. F. Bondar’, V. I. Klimov, G. P. Mkheidze, et al., Tr. IOFAN 45, 110 (1994).

    Google Scholar 

  26. G. P. Mkheidze, A. A. Savin, and G. A. Mesyats, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 4, pp. 108–126 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 75, No. 3, 2005, pp. 67–73.

Original Russian Text Copyright © 2005 by Kondrat’ev, Smetanin.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondrat’ev, N.A., Smetanin, V.I. Effect of the parameters of the plasma channel produced by a high-current relativistic electron beam in dense gaseous media on the beam transportation stability. Tech. Phys. 50, 351–357 (2005). https://doi.org/10.1134/1.1884736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1884736

Keywords

Navigation