Advertisement

Physics of the Solid State

, Volume 47, Issue 3, pp 513–516 | Cite as

55Mn spin relaxation with the participation of mobile carriers in doped perovskites

  • N. P. Fokina
  • M. O. Élizbarashvili
Magnetism and Ferroelectricity

Abstract

Analytical expressions are derived for the rates of longitudinal and transverse nuclear spin relaxation under conditions of fast modulation of the magnitude and direction of a hyperfine field induced by unpaired electrons of an ion. The results obtained are used to explain the data available in the literature on the 55Mn spin relaxation in the ferromagnetic metallic phase of doped perovskites, in which the modulation of the hyperfine field is caused by the hopping of e g electrons between Mn3+ and Mn4+ ions. It is demonstrated that, within this model, the rates of longitudinal and transverse relaxation are characterized by the same temperature dependence and their ratio is independent of temperature, which is in agreement with the experimental data.

Keywords

Spectroscopy Experimental Data State Physics Perovskite Unpaired Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Zener, Phys. Rev. 82(3), 403 (1951).CrossRefADSGoogle Scholar
  2. 2.
    M. M. Savosta, P. Novák, Z. Jirák, J. Heitmánek, and M. Marysko, Phys. Rev. Lett. 79(21), 4278 (1997).CrossRefADSGoogle Scholar
  3. 3.
    M. M. Savosta, V. A. Borodin, and P. Novák, Phys. Rev. B 59(13), 8778 (1999).CrossRefADSGoogle Scholar
  4. 4.
    M. M. Savosta and P. Novák, Phys. Rev. Lett. 87(13), 137204 (2001).Google Scholar
  5. 5.
    M. M. Savosta, V. I. Kamenev, V. A. Borodin, P. Novák, M. Marysko, J. Heitmánek, K. Dörr, and M. Sahana, Phys. Rev. B 67(10), 094403 (2003).Google Scholar
  6. 6.
    M. M. Savosta, V. D. Doroshev, V. I. Kamenev, V. A. Borodin, T. N. Tarasenko, and A. S. Mazur, Zh. Éksp. Teor. Fiz. 124(3), 633 (2003) [JETP 97, 573 (2003)].Google Scholar
  7. 7.
    G. Papavassiliou, M. Fardis, M. Belesi, T. G. Maris, G. Kallias, M. Pissas, and D. Niarchos, Phys. Rev. Lett. 84(4), 761 (2000).CrossRefADSGoogle Scholar
  8. 8.
    T. Kubo, A. Hirai, and H. Abe, J. Phys. Soc. Jpn. 26(5), 1095 (1969).Google Scholar
  9. 9.
    A. J. Freeman and R. E. Watson, in Magnetism, Ed. by G. T. Rado and H. Suhl (Academic, New York, 1965), Vol. 2A.Google Scholar
  10. 10.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  11. 11.
    T. Moriya, Prog. Theor. Phys. 16(6), 641 (1956).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro-and Antiferromagnets (Nauka, Moscow, 1969; Wiley, New York, 1972), Chap. 5.Google Scholar
  13. 13.
    T. Mizoguchi and M. Inoue, J. Phys. Soc. Jpn. 21(7), 1310 (1966).Google Scholar
  14. 14.
    R. H. Heffner, J. E. Sonier, D. E. MacLaughlin, G. J. Nieuwenhuys, G. Ehlers, F. Mezei, S.-W. Cheong, J. S. Gardner, and H. Röder, Phys. Rev. Lett. 85(15), 3285 (2000).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2005

Authors and Affiliations

  • N. P. Fokina
    • 1
  • M. O. Élizbarashvili
    • 1
  1. 1.Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations