Skip to main content
Log in

Non-Markovian theory of electron paramagnetic resonance in localized and quasi-localized electron spins via an example of manganites with colossal magnetoresistance

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An approach based on the memory functions formalism is applied to derive non-Markovian equations of motion for the magnetization components of localized and quasi-localized electron spins under electron paramagnetic resonance (EPR) conditions using the example of manganites with colossal magnetoresistance. General Hasegawa-Bloch-type equations are applied to describe certain experimental data concerning the shape and the width of EPR lines and the longitudinal and transverse relaxation rates. Particular cases of these equations reproduce well-known theoretical results concerning EPR in manganites with colossal magnetoresistance. The results obtained explain certain well-known experimental phenomena and may stimulate further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Zubarev, in Modern Problems of Mathematics (VINITI, Moscow, 1980), Vol. 15 [in Russian].

    Google Scholar 

  2. G. Röpke, Statistische Mechanik für das Nichtgleichgewicht (Wissenschaften, Berlin, 1986; Mir, Moscow, 1990).

    Google Scholar 

  3. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, Chichester, 1975; Mir, Moscow, 1978), Vol. 2.

    Google Scholar 

  4. F. Lado, J. D. Memory, and J. W. Parker, Phys. Rev. B 4, 1406 (1971).

    Article  ADS  Google Scholar 

  5. A. Abragam and M. Goldman, Nuclear Magnetism: Order and Disorder (Clarendon Press, Oxford, 1982; Mir, Moscow, 1984).

    Google Scholar 

  6. M. Mehring, High Resolution NMR Spectroscopy in Solids (Springer, Berlin, 1976; Mir, Moscow, 1980).

    Google Scholar 

  7. É. Kh. Khalvashi, Zh. Éksp. Teor. Fiz. 110, 703 (1996) [JETP 83, 379 (1996)].

    Google Scholar 

  8. É. Kh. Khalvashi and M. V. Chkhartishvili, Fiz. Tverd. Tela (St. Petersburg) 40, 1036 (1998) [Phys. Solid State 40, 946 (1998)].

    Google Scholar 

  9. D. L. Huber, G. Alejandro, A. Caneiro, et al., Phys. Rev. B 60, 12155 (1999).

  10. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, et al., Phys. Rev. B 63, 092405 (2001).

    Google Scholar 

  11. F. Simon, V. A. Atsarkin, V. V. Demidov, et al., Phys. Rev. B 67, 224433 (2003).

  12. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, et al., Appl. Magn. Reson. 21, 147 (2001).

    Google Scholar 

  13. O. Chauvet, G. Goglio, P. Molinie, et al., Phys. Rev. Lett. 81, 1102 (1998).

    Article  ADS  Google Scholar 

  14. M. T. Causa, M. Tovar, A. Caneiero, et al., Phys. Rev. B 58, 3233 (1998).

    Article  ADS  Google Scholar 

  15. V. A. Ivanshin, J. Deisenhofer, H.-A. Krug von Nidda, et al., Phys. Rev. B 61, 6213 (2000).

    Article  ADS  Google Scholar 

  16. A. Shengelaya, Guo-meng Zhao, H. Keller, et al., Phys. Rev. Lett. 77, 5296 (1996).

    Article  ADS  Google Scholar 

  17. A. Shengelaya, Guo-meng Zhao, H. Keller, et al., Phys. Rev. B 61, 5888 (2000).

    Article  ADS  Google Scholar 

  18. L. L. Buishvili and É. Kh. Khalvashi, Radiospectroscopy (Perm. Gos. Univ., Perm, 1987), p. 58 [in Russian].

    Google Scholar 

  19. C. Zener, Phys. Rev. 81, 440 (1951); Phys. Rev. 82, 403 (1951).

    Article  ADS  MATH  Google Scholar 

  20. I. Yamada, H. Fujii, and M. Hidaka, J. Phys.: Condens. Matter 1, 3397 (1989).

    ADS  Google Scholar 

  21. B. N. Provotorov, Zh. Éksp. Teor. Fiz. 41, 1582 (1961) [Sov. Phys. JETP 14, 1126 (1962)].

    Google Scholar 

  22. H. Hasegawa, Prog. Theor. Phys. 23, 483 (1959).

    ADS  Google Scholar 

  23. H. Hasegawa and A. M. Stewart, Prog. Theor. Phys. 74, 943 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  25. C. P. Slichter, Principles of Magnetic Resonance, 2nd ed. (Springer, Berlin, 1980; Mir, Moscow, 1967).

    Google Scholar 

  26. S. E. Barnes, Adv. Phys. 30, 801 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  27. N. P. Fokina and K. O. Khutsishvili, Appl. Magn. Reson. 17, 503 (1999).

    Google Scholar 

  28. N. P. Fokina and K. O. Khutsishvili, Zh. Éksp. Teor. Fiz. 123, 98 (2003) [JETP 96, 83 (2003)].

    Google Scholar 

  29. N. P. Fokina, M. O. Élizbarashvili, V. A. Atsarkin, et al., Fiz. Tverd. Tela (St. Petersburg) 45, 1921 (2003) [Phys. Solid State 45, 2017 (2003)].

    Google Scholar 

  30. V. Cataudella, G. De Filippis, and G. Ladonisi, Phys. Rev. B 63, 052406 (2001).

    Google Scholar 

  31. D. L. Huber, Phys. Rev. B 12, 31 (1975).

    Article  ADS  Google Scholar 

  32. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963), pp. 435–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 2, 2005, pp. 445–457.

Original Russian Text Copyright © 2005 by Khalvashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalvashi, E.K. Non-Markovian theory of electron paramagnetic resonance in localized and quasi-localized electron spins via an example of manganites with colossal magnetoresistance. J. Exp. Theor. Phys. 100, 398–409 (2005). https://doi.org/10.1134/1.1884678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1884678

Keywords

Navigation