Skip to main content
Log in

Probe field spectroscopy in two-level systems with arbitrary phase memory in collisions

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The spectrum of weak probe field absorption (amplification) by two-level atoms experiencing collisions with buffer gas atoms in a strong resonance laser field is studied theoretically. Analysis is carried out for systems with a weak Doppler broadening under relatively mild constraints on the strong field intensity for the general case of an arbitrary change in the phase of the radiation-induced dipole moment in elastic collisions of gas particles. It is shown that, in spite of uniform broadening of the absorption line, the probe field spectrum exhibits a clearly manifested anisotropy to mutual orientation of the wavevectors of strong and probe radiation. It is found that the width of resonances in the probe field spectrum under definite conditions (that can easily be created in experiments) is proportional to the diffusion coefficient for atoms interacting with radiation. This fact can form the basis of the spectroscopic method for measuring the transport frequencies of collisions between particles absorbing radiation and buffer particles. It is shown that phase memory effects in collisions strongly modify the probe field spectrum both qualitatively and quantitatively. Simple operative formulas proposed for the probe field spectrum are convenient for experimental data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Atomic and Molecular Spectra (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  2. A. K. Popov, Introduction in Nonlinear Spectroscopy (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  3. V. S. Letokhov and V. P. Chebotaev, High-Resolution Nonlinear Laser Spectroscopy (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  4. S. G. Rautian and I. I. Sobel’man, Zh. Éksp. Teor. Fiz. 41, 456 (1961) [Sov. Phys. JETP 14, 328 (1962)].

    Google Scholar 

  5. B. R. Mollow, Phys. Rev. A 5, 2217 (1972).

    ADS  Google Scholar 

  6. S. Haroche and F. Hartmann, Phys. Rev. A 6, 1280 (1972).

    Article  ADS  Google Scholar 

  7. G. S. Agarwal, Phys. Rev. A 19, 923 (1979).

    Article  ADS  Google Scholar 

  8. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, Phys. Rev. A 24, 411 (1981).

    Article  ADS  Google Scholar 

  9. D. S. Bakaev, Yu. A. Vdovin, V. M. Ermachenko, and S. I. Yakovlenko, Kvantovaya Élektron. (Moscow) 12, 126 (1985).

    Google Scholar 

  10. G. Grynberg and C. Cohen-Tannoudji, Opt. Commun. 96, 150 (1993).

    Article  ADS  Google Scholar 

  11. C. Szymanowski, C. H. Keitel, B. J. Dalton, and P. L. Knight, J. Mod. Opt. 42, 985 (1995).

    ADS  Google Scholar 

  12. A. M. Bonch-Bruevich, V. A. Khodovoi, and N. A. Chigir’, Zh. Éksp. Teor. Fiz. 67, 2069 (1974) [Sov. Phys. JETP 40, 1027 (1975)].

    ADS  Google Scholar 

  13. C. Wei and N. B. Manson, Phys. Rev. A 49, 4751 (1994).

    Article  ADS  Google Scholar 

  14. F. Y. Wu, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys. Rev. Lett. 38, 1077 (1977).

    Article  ADS  Google Scholar 

  15. L. S. Gaida, I. S. Zeilikovich, S. A. Pul’kin, and É. E. Fradkin, Opt. Spektrosk. 65, 802 (1988) [Opt. Spectrosc. 65, 474 (1988)].

    Google Scholar 

  16. A. Yu. Parkhomenko and A. M. Shalagin, Zh. Éksp. Teor. Fiz. 120, 830 (2001) [JETP 93, 723 (2001)].

    Google Scholar 

  17. V. N. Faddeeva and N. M. Terent’ev, Tables of the Values of the Probability Integral in Terms of Complex Argument, Ed. by V. A. Fok (Gostekhizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  18. F. Kh. Gel’mukhanov and A. I. Parkhomenko, Phys. Scr. 44, 477 (1991).

    Google Scholar 

  19. S. N. Atutov, I. M. Ermolaev, and A. M. Shalagin, Zh. Éksp. Teor. Fiz. 92, 1215 (1987) [Sov. Phys. JETP 65, 679 (1987)].

    Google Scholar 

  20. S. N. Atutov, B. V. Bondarev, S. M. Kobtzev, et al., Opt. Commun. 115, 276 (1995).

    Article  ADS  Google Scholar 

  21. F. Sh. Ganikhanov, I. G. Konovalov, V. N. Kulyasov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 54, 433 (1991) [JETP Lett. 54, 433 (1991)].

    Google Scholar 

  22. I. G. Konovalov, V. N. Kulyasov, V. B. Morozov, and V. G. Tunkin, Opt. Spektrosk. 77, 329 (1994) [Opt. Spectrosc. 77, 291 (1994)].

    Google Scholar 

  23. E. C. Beaty, P. L. Bender, and A. R. Chi, Phys. Rev. 112, 450 (1958).

    Article  ADS  Google Scholar 

  24. M. E. Zhabotinskii, in Quantum Electronics: Little Encyclopedia, Ed. by M. E. Zhabotinskii (Sovetskaya Éntsiklopediya, Moscow, 1969), p. 35 [in Russian].

    Google Scholar 

  25. R. S. Eng, A. R. Calawa, T. C. Harman, et al., Appl. Phys. Lett. 21, 303 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, Vol. 127, No. 2, 2005, pp. 320–330.

Original Russian Text Copyright © 2005 by Parkhomenko, Shalagin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhomenko, A.I., Shalagin, A.M. Probe field spectroscopy in two-level systems with arbitrary phase memory in collisions. J. Exp. Theor. Phys. 100, 283–293 (2005). https://doi.org/10.1134/1.1884669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1884669

Keywords

Navigation