Skip to main content
Log in

The asymmetry coefficient for interstellar scintillation of extragalactic radio sources

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Comparing the asymmetry coefficients γ and scintillation indices m for observed time variations of the intensity of the radiation of extragalactic sources and the predictions of theoretical models is a good test of the nature of the observed variations. Such comparisons can be used to determine whether flux density variations are due to scintillation in the interstellar medium or are intrinsic to the source. In the former case, they can be used to estimate the fraction of the total flux contributed by the compact component (core) whose flux density variations are caused by inhomogeneities in the interstellar plasma. Results for the radio sources PKS 0405-385, B0917+624, PKS 1257-336, and J1819+3845 demonstrate that the scintillating component in these objects makes up from 50 to 100% of the total flux, and that the intrinsic angular sizes of the sources at 5 GHz are 10–40 microarcseconds. The characteristics of the medium giving rise to the scintillations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Jauncey, L. Kedziora-Chudczer, J. E. J. Lovell, et al., Astrophys. Space Sci. 278, 93 (2001).

    Article  Google Scholar 

  2. J. Dennett-Thorpe and A. G. de Bruyn, Astrophys. Space Sci. 278, 101 (2001).

    Article  ADS  Google Scholar 

  3. S. J. Qian, A. Kraus, T. P. Krichbaum, et al., Astrophys. Space Sci. 278, 119 (2001).

    Article  ADS  Google Scholar 

  4. B. J. Rickett, Astrophys. Space Sci. 278, 129 (2001).

    ADS  Google Scholar 

  5. H. E. Bignall, D. L. Jauncey, J. E. J. Lovell, et al., Astrophys. J. 585, 653 (2003).

    Article  ADS  Google Scholar 

  6. G. Bourgois, Astron. Astrophys. 21, 33 (1972).

    ADS  Google Scholar 

  7. G. Bourgois and G. Cheynet, Astron. Astrophys. 21, 26 (1972).

    ADS  Google Scholar 

  8. J. W. Armstrong, W. A. Coles, and B. J. Rickett, J. Geophys. Res. 77, 2739 (1972).

    Google Scholar 

  9. V. I. Shishov and A. V. Pynzar’, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 18, 506 (1975).

    Google Scholar 

  10. M. Nakagami, Statistical Methods in Radio Wave Propagation, Ed. by W. C. Hoffman (Pergamon, New York, 1960), p. 3.

    Google Scholar 

  11. R. P. Mercier, Proc. Cambridge Philos. Soc. 58, 382 (1962).

    MATH  Google Scholar 

  12. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Nauka, Moscow, 1967; Israel Program for Scientific Translations, Jerusalem, 1971).

    Google Scholar 

  13. R. J. Hill, R. G. Frehlich, and W. D. Otto, NOAA Tech. Memo. ETL-274 (NOAA Enviromental Research Laboratories, Boulder, 1996).

    Google Scholar 

  14. R. J. Hill and R. G. Frehlich, J. Opt. Soc. Am. A 14, 1530 (1997).

    ADS  Google Scholar 

  15. D. R. Stinebring, T. V. Smirnova, T. H. Hankins, et al., Astrophys. J. 539, 300 (2000).

    Article  ADS  Google Scholar 

  16. T. V. Smirnova, V. I. Shishov, W. Sieber, et al., Astron. Astrophys (submitted).

  17. C.-Y. Tu and E. Marsh, Space Sci. Rev. 73, 1 (1995).

    Article  ADS  Google Scholar 

  18. S. A. Tyul’bashev and P. A. Chernikov, Astron. Astrophys. 373, 381 (2001).

    ADS  Google Scholar 

  19. B. J. Rickett, L. Kedziora-Chudczer, and D. L. Jauncey, Astrophys. J. 581, 103 (2002).

    Article  ADS  Google Scholar 

  20. A. Quirrenbach, A. Kraus, A. Witzel, et al., Astron. Astrophys., Suppl. Ser. 141, 221 (2000).

    Article  ADS  Google Scholar 

  21. A. G. de Bruyn and J. Dennett-Thorpe, Astrophys. Space Sci. 278, 139 (2001).

    ADS  Google Scholar 

  22. J. Dennett-Thorpe and A. G. de Bruyn, Astrophys. J. Lett. 529, L65 (2000).

    Article  ADS  Google Scholar 

  23. T. V. Smirnova and V. I. Shishov, Astron. Zh. 77, 483 (2000) [Astron. Rep. 44, 421 (2000)].

    Google Scholar 

  24. A. V. Pynzar’ and V. I. Shishov, Astron. Zh. 74, 663 (1997) [Astron. Rep. 41, 586 (1997)].

    ADS  Google Scholar 

  25. W. F. Brisken, J. M. Benson, W. M. Cross, and S. E. Torsett, Astrophys. J. 571, 906 (2002).

    Article  ADS  Google Scholar 

  26. B. J. Rickett, Wm. A. Coles, and J. Markkanen, Astrophys. J. 533, 304 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 3, 2005, pp. 281–288.

Original Russian Text Copyright © 2005 by Shishov, Smirnova, Tyul’bashev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishov, V.I., Smirnova, T.V. & Tyul’bashev, S.A. The asymmetry coefficient for interstellar scintillation of extragalactic radio sources. Astron. Rep. 49, 250–257 (2005). https://doi.org/10.1134/1.1882783

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1882783

Keywords

Navigation