Skip to main content
Log in

Polarization effects in the radiation of magnetized envelopes and extended accretion structures

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have calculated the degree and position angle of the polarization of radiation scattered in a magnetized, optically thin or optically thick envelope around a central source, taking into account Faraday rotation of the plane of polarization during the propagation of the scattered radiation and the finite size of the radiation source. The wavelength dependence of the degree of polarization can be used to estimate the magnetic field of the source (a star, the region around a neutron star, or a black hole), and we have used our calculations to estimate the magnetic fields in a number of individual objects: several hot O and Wolf-Rayet stars, compact objects in X-ray close binaries with black holes (SS 433, Cyg X-1), and supernovae. The spectrum of the linear polarization can be used to determine the magnetic field in the vicinity of a central supermassive black hole, where the polarized optical radiation is generated. In a real physical model, this value can be extrapolated to the region of the last stable orbit. In the future, the proposed technique will make it possible to directly estimate the magnetic field in the region of the last stable orbit of a supermassive black hole using X-ray polarimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Z. Dolginov, Yu. N. Gnedin, and N. A. Silant’ev, Propagation and Polarization in Cosmic Media (Nauka, Moscow, 1979; Gordon and Breach, Amsterdam, 1995).

    Google Scholar 

  2. S. L. Robertson and D. J. Leiter, Astrophys. J. 596, L203 (2003).

    Article  ADS  Google Scholar 

  3. Yu. N. Gnedin, N. V. Borisov, T. M. Natsvlishvili, et al., Izv. Glav. Pulkov. Astron. Obs. 216, 516 (2002); Astrophys. Space Sci. (in press).

    Google Scholar 

  4. R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977).

    ADS  Google Scholar 

  5. L.-X. Li, astro-ph/0202361.

  6. F. M. Rieger and K. Manheim, astro-ph/0011012.

  7. A. Tomimatsu and M. Takakashi, Astrophys. J. 552, 710 (2001).

    Article  ADS  Google Scholar 

  8. Yu. N. Gnedin and N. A. Silant’ev, Pis’ma Astron. Zh. 6, 344 (1980) [Sov. Astron. Lett. 6, 190 (1980)].

    ADS  Google Scholar 

  9. Yu. N. Gnedin and N. A. Silant’ev, Astrophys. Space Sci. 102, 375 (1984).

    Article  ADS  Google Scholar 

  10. N. A. Silant’ev, Yu. N. Gnedin, and T. Sh. Krymski, Astron. Astrophys. 357, 1151 (2000).

    ADS  Google Scholar 

  11. M. A. Pogodin, Pis’ma Astron. Zh. 18, 442 (1992) [Sov. Astron. Lett. 18, 178 (1992)].

    ADS  Google Scholar 

  12. E. Agol, O. Blaes, and C. Ionescu-Zanetti, Mon. Not. R. Astron. Soc. 293, 1 (1998).

    Article  ADS  Google Scholar 

  13. P. S. Shternin, Yu. N. Gnedin, and N. A. Silant’ev, Astrofiz. 46, 433 (2003) [Astrophys. 46, 350 (2003)].

    Google Scholar 

  14. N. A. Silant’ev, Astron. Astrophys. 383, 326 (2002).

    ADS  Google Scholar 

  15. D. Lai, Astrophys. J. 524, 1030 (1999).

    Article  ADS  Google Scholar 

  16. J. Babel and T. Montmerle, Astrophys. J. 485, L29 (1997).

    Article  ADS  Google Scholar 

  17. O. Chesneau, S. Wolf, and A. Domiciano de Souza, astro-ph/0307407.

  18. M. E. Contreras, G. Montes, and F. P. Wilkin, astro-ph/0310393.

  19. A. B. Underhill and R. P. Fahey, Astrophys. J. 280, 712 (1984).

    Article  ADS  Google Scholar 

  20. O. Chesneau and A. F. J. Moffat, Publ. Astron. Soc. Pac. 114, 612 (2002).

    Article  ADS  Google Scholar 

  21. I. G. Nolt, J. G. Kemp, R. J. Rudy, et al., Astrophys. J. 199, L27 (1975).

    Article  ADS  Google Scholar 

  22. A. M. Cherepashchuk, Usp. Fiz. Nauk 171, 864 (2001) [Phys. Usp. 44, 821 (2001)].

    Google Scholar 

  23. N. G. Bochkarev, E. A. Karitskaya, R. A. Syunyaev, et al., Astron. Zh. 55, 185 (1979).

    Google Scholar 

  24. E. A. Karitskaya, Astron. Zh. 58, 146 (1981) [Sov. Astron. 25, 80 (1981)].

    ADS  Google Scholar 

  25. Yu. N. Gnedin, N. V. Borisov, T. M. Natsvlishvili, M. Yu. Piotrovich, and N. A. Silant’ev, astro-ph/0304158.

  26. C. Brocksopp, R. P. Fender, and G. G. Pooley, Mon. Not. R. Astron. Soc. 336, 699 (2002); astro-ph/0206460.

    Article  ADS  Google Scholar 

  27. A. M. Cherepashchuk, R. A. Sunyaev, E. V. Seifina, et al., astro-ph/0309140 (2003).

  28. D. R. Gies, W. Huang, and M. V. McSwain, Astrophys. J. 578, L67 (2002).

    Article  ADS  Google Scholar 

  29. I. S. McLean and S. Tapia, Nature 287, 704 (1980).

    ADS  Google Scholar 

  30. Y. S. Efimov, V. Piirola, and N. M. Shakovskoy, Astron. Astrophys. 138, 62 (1984).

    ADS  Google Scholar 

  31. J. F. Dolan, P. T. Boyd, S. N. Fabrica, et al., Astron. Astrophys. 327, 648 (1997).

    ADS  Google Scholar 

  32. L.-X. Li, astro-ph/0112503.

  33. T. J. Maccarone and P. S. Coppi, astro-ph/0204235.

  34. N. I. Shakura and R. A. Sunayev, Astron. Astrophys. 24, 377 (1973).

    ADS  Google Scholar 

  35. A. R. King, J. E. Pringle, R. G. West, et al., astro-ph/0311035.

  36. L. Wang, D. Baade, P. Höflich, et al., Messenger 109, 47 (2002).

    ADS  Google Scholar 

  37. D. C. Leonard, A. V. Fillipenko, A. J. Barth, et al., Astrophys. J. 536, 239 (2000).

    Article  ADS  Google Scholar 

  38. J. C. Wheeler, P. Höflich, L. Wang, et al., astro-ph/9912080.

  39. P. Höflich, J. C. Wheller, and L. Wang, Astrophys. J. 521, 179 (1999).

    Article  ADS  Google Scholar 

  40. D. C. Leonard, A. V. Fillipenko, and M. S. Brotherton, Astrophys. J. 553, 861 (2001).

    Article  ADS  Google Scholar 

  41. D. Kasen, P. Nugent, L. Wang, et al., astro-ph/0301312.

  42. Yu. N. Gnedin and N. A. Silant’ev, Pis’ma Astron. Zh. 28, 499 (2002) [Astron. Lett. 28, 438 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 82, No. 3, 2005, pp. 207–218.

Original Russian Text Copyright © 2005 by Gnedin, Silant’ev, Piotrovich, Pogodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnedin, Y.N., Silant’ev, N.A., Piotrovich, M.Y. et al. Polarization effects in the radiation of magnetized envelopes and extended accretion structures. Astron. Rep. 49, 179–189 (2005). https://doi.org/10.1134/1.1882776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1882776

Keywords

Navigation